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Homoclinic Orbits in 3D Dissipative Systems
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The paper deals with a variational system corresponding to a three-dimensional dynamic system. The characteristic equation
of the variational system depends on partial solutions. The matrix of the right-hand part of the variational system is a sum of
two matrices. One matrix contains the spectrum of the linear system and the other one represents partial solutions. Two
theorems, determining the sign of the sum of the characteristic exponents of a point on a homoclinic trajectory, are proved.
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Statement of the problem

HE problem of periodic orbit generations from
homoaclinic loops in three-dimensional systems was
discussed in [1-12].Consider the system

dxldt=F(x,u), x(t)eR", ueR", (0]

where n=3, F(x,u)is a smooth function and R" is a
parameter space. We introduce into consideration a small
deviation in the neighborhood of partial solutions
x(=12,...,n), ox=x0)-%¢) (@=12,..,n) of
equation (1). Consider 5x; to benew coordinates. Thelinear
system corresponding to system (1) in the coordinates Sx;

doxldt = A(x)ox, SxeR", ()]

where A(x) = oF / ox |,-5, iscaled a system of variational
equations [13]. By means of the analysis of the roots of the
characteristic equation of thematrix 4(x), onecan study the
mechanism of theformation of periodic and complex motions.
We present the matrix A(x) of system (2) in the form of a
sum of two matrices

A(X) =N+ M(x), (3)

where the matrix N corresponds to the spectrum of linear
system (2) which does not contain its partial solutions. The
matrix M (x) corresponds to a part of the spectrum of
equations (2) which contains partia solutions x;, x,, Xs.

We cite some definitions and a theorem from [2].

Wedesignate, by 7, 4, 4, , the characteristic exponents of
the saddle equilibrium state of the point O at the origin of
system (1) so that

y>0> Relp .

The unstable manifold W* of the saddle O is one-

dimensional and the stable manifold #* istwo-dimensional.
The unstable manifold consists of three orbits: the saddle O
itself, and two separatrices I'; and I',. We assume that the
system has a separatrix loop, i.e. Iy tendsto O as ¢ — ..
Theparameter ;, controlstheloop splitting. The parameter sign
is opposite to the sign of the saddle value, which equalsto

o =y+Rel  + Rel,.

Theorem 13.6 (Shilnikov [2]). If the saddle value o is
negative, a single stable periodic orbit L is generated from
the homoclinicloop for x> 0. The separatrix I'; tendsto L
ast — +owo . For u <0 thereareno periodic orbitsin asmall

neighborhood U of the homoclinic loop. Thetrajectoriestend
eitherto £ (ortotheloop T’ for x=0)orto O, or leave U

aSt— +o0.

This paper also dealswith ahomoclinic loop. By means of
one approach, the signs of the saddle values are determined
and the attraction of al points on the loop is established.

On the existence of a homoclinic trajectory

We assume system (1) asfollows.

Proposition 2.1. System (1) possesses three singular points.
The singular point 0(0,0,0) (a saddle knot with a negative
saddle value) hasthe characteristic exponents 4,, A, , A5, where
4 >0, 1, <0,and 4; < 0. Thereexistsaneighborhood of the
point O that, according to the Grobman-Hartmantheorem[1],is
filled with saddle-knot points which go into the knot-focus ones
othat Rei; <0, Red, <0, 43<0.

We make the following assumption on the matrix M (x)
Proposition 2.2. The characteristic equation of the matrix
M (x) possessesthefollowing eigenvalues: onezero and two

i magi nary ones.jhe sum of the eigenvalues equals to zero:
L (X) + A, (X) + 43(x) = 0.

Y Stability of Processes Department, S.P.Timoshenko Institute of Mechanics of Nacional Academy of Science of Ukraine, Nesterov sir. 3, Kiev, 03057, UKRAINE



54 MARTYNYUK,A.A., NIKITINA,N.V.: HOMOCLINIC ORBITSIN 3D DISSIPATIVE SYSTEMS

Theorem 2.3. For differential system (1) let the conditions
of Proposition 2.1 and 2.2 be sdtisfied. Then, in the

neighbourhood of the singular point O(0,0,0) of system (1)

there exists a field of saddle-knot points which go into the
knot-focus ones. The saddlevalue ¢ = 4, + 4, + A; obtained
in correspondence with certain parameter values will be one
and the same for all the points of three-dimensional space
including all singular points.

Proof. Under the conditions of Proposition 2.2 the saddle
value of the trgjectory points is determined by the matrix

A(x) according to the equation
| A(X)-AE|F|N-AE|=0,

where E is an identity matrix. The bifurcation processin the
field of three-dimensional system (1) occurs in accordance
with the Grobman-Hartman theorem [1]. The neighborhood,
filled with the saddle-knot pointssothat ¢ = 4, + 4, + 43 < 0,
goes into the knot-focus continuum. For the knot-focus
domain Re; <0, Red, <0, 43 <0.Theknot-focusloop has
a value o =Rely +Rel,+13<0 a al points of the
trgjectory. This value is specified by the roots of a linear
system, then ¢ =6, =0, = o5, Where o, and o, arethe
values of any points 4 and B, including the singular ones.

Corollary 2.4. For differential system (1) let the conditions
of Proposition 2.1 and 2.2 be satisfied and in system (1) a
loop beformed. If thisloop embracesall singular points, then
alimiting cycle is generated from the loop.

Proof. Theorem 2.3 shows that the loop has a negative
vaue oa al points. From the homoclinic loop with a
negative value o, such that Re4; <0, Red, <0,143<0,a
stable periodic orbit is generated.

Corollary 2.5. For differentia system (1) let the conditions
of Proposition 2.1 and 2.2 be satisfied and in system (1) two
loops beformed. Then limiting cycles are generated from the
loops, provided the loop orbits do not intersect.

On system (1) we shall assume as follows.

Proposition 2.6. The singular point O(0,0,0) of system
(1) is a saddle-focus with a saddle value egua to zero
(GO = 2R€ﬂ,1'2 +13 = 0) .

Proposition 2.7. The saddle value of the points of system
(1) specified by the characteristic equation | M (x) - AE [= 0,
is negative for x =0 and al the points are of attractive
character.

Proposition 2.8. For x = O differential system (1) formsa
loop.

Theorem 2.9. For differential system (1) |et the conditions
of Proposition 2.6, 2.7 and 2.8 be satisfied. Then, in the
neighbourhood of the singular point O(0,0,0) of system (1)
aclosed integral curve exists.

Proof. Under the conditions of Proposition 2.6 and 2.7 the
matrix A(X) has eigenvalues satisfying the equation
|AX)-AEFIM(x)-AE|=0. If the conditions of
Proposition 2.8. are satisfied, aloop isformed with anegative
value o and the attraction at every point. Such a loop
generates a stable periodic orbit.

We return to Theorem 13.6 [2]. In Theorem 13.6, a
parameter , ismentioned, governing the loop splitting. The
theorem was discussed in [4]. In this paper, we consider a
principle of determining the sign of the saddle value of a
homoclinic loop and the parameter values. Thisis because of

the attractive character of the trgjectory points. The
applications are presented.

Applications

Application of Theorem 2.3. Example 1. Consider the
Lorentz system

dyldt=rx—y—xz, 4

dxldt=s(-x+y),
dz | dt = bz + xy.

where b, ¥ and s arepositiveparameters (» > 1) . Insystem (4)
we introduce the small deviations ox, oy, and 5z from the

partia solutions x, y and z and compile the variationa
equation

OX = —50x+59y,
6y =(r—-z)ox—0y—Xxoz, (5)
0z =-boz+yox+Xdy.
System (4) possesses the following singular points
0(0,0,0),
AWb(r-1), Jb(r-1), r-1),
B(—/b(r-1), —/b(r-1), r-1).

By the characteristic equation of system (5)

B+ 22B+s+D)+A(1-r+2)+b(s +1) +x%) + (

+s(b(1-r+z)+x(x+7y))=0 ®)

The characteristic exponents of the points in the field of
three-dimensional space of system (4) can be determined. At
point O equation (6) becomes

(A+b)(A? + A(1+5)+s(1-r)) = 0.

Fromit, wefind

Jg = —(s+1) 1 2+((s+1) 1 22 +5(r 1), @
A3 ==b(7)
Thesingular point O isasaddle-knot with the saddle value
o =—(s+1)—b. We write the matrix equality in terms of
variational equation (5). Correlation (3) is presented as

-s s 0 -s s 0 0O 0 O
r-z -1 -x|=|r -1 0 |+|-z 0 =x|. (8)
y X -b 0 0 -b y x O

There is amatrix of the variational system (5) in the | eft-
hand part of equality (8). The first matrix in the right-hand
part of equality (8) represents a spectrum of thelinear system

corresponding to system (4). The second matrix M (x)
corresponds to the part of equations (5) which contains the
partial solutions X,y and z and has the roots of the
characteristic equation

/ﬂz:ii\/;, A5 =0. 9)

Note that the partial solutions X,, and Z of the system

of equations (5) are unknown. In system (4), there are several
attractors. In Fig.1, a phase portrait of the limiting cycle of
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system (4) is shown for the parameter values
(b,r,s) =(8/3;153;10). By means of equation (6) and the
numerical solution of system (4), one can specify thedomains
of the points of the saddle-knot character in the zero
neighborhood. In Fig.1, the thick lines mark the totalities of
thetrajectory points of the saddle-knot character, and thethin
lines indicate the knot-focus points for which Ret, <O,
Red, <0, 43<0. Fig.2 shows two limiting cycles (the
parameter values (b,r,s) = (8/3;100;10) . The spectrum of
the characteristic Lyapunov exponents for the limiting cycle
satisfies the inequality A; + A, + A3 <O0.
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Figure 1. Limiting cycle of the Lorentz system

60
40-
20-
y 0-

_10-

_40_

-60 T r T v T r T

-30-20-10 0 10 20 30 40
x

Figure 2. Two limiting cycles

The attractor aternative is a strange attractor emerging
under the orbital loss of motion stability by the image point
with respect to one of the singular points at transition (jump)
to the motion with respect to the other singular point (points
4 and B).

Application of Theorem 2.9. Example 1. Consider asystem
of three differential nonlinear equations (a generator with
quadratic nonlinearity [4])

dx _

o mx—Xxz+Yy,

dy _

E— X, (10)
i b(z—x%),

where m and b are positive parameters. The system has one
singular point 0(0,0,0). Introduce small deviations
0x,0y,0z fromthe partial solutions x,y and z of system
(10) and compile the variational equation

%:(m—f)5x+5y—)?§z,
ddy _

@ o

@:_ — v

p b(6z — 2x5x).

We write the characteristic equation of the system

A+ 22(b-m+2)+ A(b(-m+Z+2%%)+1)+b = 0.
At point O(0,0,0) the characteristic equation becomes

(A+b)(A%2—Am+1)=0.
The characteristic exponents of point 0(0,0,0) are
Qo =ml2+~(ml2)? -1, i3 =-b.
We prescribe the following values of the parameters
(m,b) = (1,2). (11)

The point O is of the saddle-focus type with the saddle
value o =0. The matrix

z 0%x
M@EZ)=| 0 00
—2bx 0 0

corresponds to the characteristic equation
A(A? + Az +2bx%) =0,

whose roots are

Mo =-712+(Z12)%-2bx?, 3 =0.
Thesaddlevalueis ¢ = —z. Let us show that the matrix

M(x,z) correspondsto the dissipative oscillator. Consider a
linear system

aX _ - -
aX - _zx_xz
i zX -xZ,
dZ _ 5~
" 2bxX,

which isidentical to the dissipative oscillator

2
d°Z , dZ | opz27 =,

dr?  dt
Then the saddle value o =-z has a negative sign.
According to Theorem 2.9, for the parameters chosen (11),
there exists a periodic orbit in system (10). Figurse 3 and 4
present aclosed curve of system (10) in the projection on the
coordinate planes.
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Figure 3. Projection of the limiting cycle of system (10) on the plane xy
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Figure 4. Projection of the limiting cycle of system (10) on the plane xz

Example 3. Consider a system of three nonlinear
differential Chua equations

dx | dt = a(ax —bx®+y),
dyldt=x-y+z, (12
dzldt =—py,

where a,b,a and g are positive parameters. Though the

Chua chain dynamicsiswidely described in literature [2, 14,
15] we are intending to apply Theorem 2.9 to establish the
existence of a homoclinic trgjectory. System (12) possesses

three equilibrium states: singular point 0(0,0,0) and
singular points A(x, =~alb, y,=0, z,=—alb), and

B(xz = —alb, yg =0, zz =<alb). Weintroduce small
deviations 6x,8y and &z from the partial solutions x,y
and z of system (12) and compile the variational equations

déxldt = a(adx—3bx°6x+5Y),
doyldt=6x—0y+0z,
dézldt=—p5y.

The characteristic equation corresponding to the variational
system reads

A2+ 22+ a(-a+30x2)) + A(B —a(l+a—-3bx2)) + (13)
+af(—a+3bx?) = 0.

Thebifurcation processin the systemisassociated with the
variation of the coordinatex, sincethe characteristic equation
depends only on the partial solution x . The characteristic
exponents of the point O are determined in terms of the

equation A%+ 12(1-aa)+A(S -a(l+a))—afa=0. We
prescribe the parameter values

(a,a) = (1/6,6); b=a;Be(7,..10,1). (14)

Therequirement to parameters (14) isthat the saddlevalue
of point 0(0,0,0) equals to zero. In order that the initial
perturbations generate aclosed curve with respect to the point

O in system (12), the initial conditions should be chosen in
accordance with the following estimates

[XQ) Plxsl, [¥ORO, 20 Plzs]. (15

Such achoice excludesthe effect of the singular points 4
and B ,which, similarly to thepoint O, form some motion of
system (12). The choice of the initial conditions can be
refined numerically (in the framework of inequalities (15)).

The characteristicequation 12 (4 + 3abx?) = 0 of the matrix
M (x) possessestheeigenvalues 4, = 4, =0, 43 = -3abx2.
Zero roots are simple. Under the conditions of parameters

(14) and the choice of theinitial conditions (15), there exists
an dtractive periodic orbit in system (12) (according to
Theorem 2.9).

Note that the saddle value o = 2Re4; , + 43, calculatedin
terms of equation (13) depends only on the coordinate x . In
Fig.5, the dependence of o(x) is shown. At point 0, the
saddle value equalsto zero. Fig.6 presents atrajectory closed
with respect to the point O under the initial perturbations

X(0)=-1,7; y(0)=0: z(0)=-1,7.

\

-1.5 -1,0 -0,5 0,0 05 1.0 1,5
x

Figure 5. Thegraf o(x) of the saddle value of the Chua system

Figure 6. Limiting cycle of the Chua system

Consider the behavior of the solutionsin the Chuasystem,
which are dueto thesingular points 4 and B. The points 4 and
B canform closed curves excluding thepoint O . The points 4
and B are skew-symmetric. Therefore, consider motion with
respect to one point only. The parameter S caninfluencethe
location of the trgjectories relatively to the points 4 and B.
The main requirement is that the trajectories do not intersect.
We relate with the point 4 aframe of reference Avyw and

compile the motion equationsin new coordinates

dvldt = a(-2av—bv?(Nalb+v)+y),
dyldt=v—y+w,
dwldt=-py,

where v=x—+alb, w=z+~alb. Intheframeof reference
Avyw, the singular point O has the coordinates:

vo=—alb, y,=0, wy=~alb. Under the initia
perturbations
[v(0) [<Valb, [|y(O) 0, [wy(0)l<valb (16)

the motion under the effect of the singular point A4 is
dominating in the system. The estimates of the initial
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conditions can a so be refined numerically (in the framework
of inequalities (16)). At the motion of the image point in the
neighborhood of the point A4 (or B), al points of thetrajectory
are attractive and with a negative saddle value.

Fig.7 presents two limiting cycles in the frame of the
reference  Oxyz with  the initid  conditions

x(0) =0,2; y(0)=0; z(0) =-0,2 (acyclewithrespect tothe
point 4); x(0)=-0,2; y(0)=0; z(0)=0,2 (a cycle with
respect to the point B), the parameter 5 =9.

154
1]
051
z D.ﬂ; ®
051
104

-5 -10 -05 00 05 10 135

i

Figure 7. Two limiting cycles

Concluding remarks

The paper deals with the bifurcation processes in three-
dimensional systems. Two theorems presented are associated
with the problem of limiting cycle generations from
homoclinic loops in three-dimensional systems. The first
theorem establishesthe existence of homoclinictrgjectoriesin
systems having in common acertain property of thetopology
of athree-dimensional system space: the saddlevaluesarethe
samefor al the points. The second theoremisassociated also
with variational equations. Thetwo theoremsare of sufficient
character. A mathematical Chua model is considered as an
example.
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Homoklini¢ke orbite u 3D disipativnim sisteminma

U radu se proucavaju varijacioni sistemi koji odgovaraju trodimenzionalnim dinamickim sistemima. Karakteristi¢na
jednacina varijacionog sistema zavisi of parcilanih reSenja. Matrica desne strane varijacionog sistema je suma dve matrice.
Jedna matrica sadrZi spektar linearnog sistema, dok druga reprezentuje parcijalno reSenje. Dokazane su dve teoreme, kojima
se odredjuje znak sume Kkarakterisi¢nih eksponenata tacaka homoklonicke trajektorije.

Kljucne reci: dinamicki sistem, disipativni system, varijacioni sistemi, homoklini¢ka orbita.

T'omokanan4yeckne opouThl B 3D quccHNaTHBHBIX CHCTEMAaX

B 3T0ii cTaThe MBI H3y4aeM CHCTeMbI YPABHEHHIl B BADHAIMSAX, KOTOPbIe COOTBETCTBYIOT TPEXMEPHBIM AHHAMHYECKHM
cucTeMaM. XapaKkTepucTHYecKoe yPpaBHeHHe CHCTeMbl B BADHAIMSIX 3aBMCHT OT YACTHBIX pemieHuii. MaTpuua npasoii
CTOPOHBI CHCTEMBI B BAPHALUSX SIBJIsIeTCsI CyMMoii 1ByX MaTpul. OaHa MaTpHIA COOTBETCTBYeET JIHHEIHOI cHCTeMe, B TO
BpeMsl KaK BTOpasi MATPULA TPeACTAB/IsET YacTHOe peweHHe. /IokazaHHbI ABe TeopeMbl, KOTOPbIE ONpPeIeIsIIOT 3HAK
CYMMBI XapaKTepHBIX NoKa3aTeJieil ToUeK rOMOKJIMHHYECKOi TPaeKTOpuH.

Kouesvie cnosa: nuHaMu4decKast CHCTEMA, TUCCHIIATHBHAS CUCTEMA, CHCTEMA B BapHallMsAX, TOMOKJIHHUYECCKast opﬁuTa.
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Orbites homo cliniques dans les systémes 3D dissipatifs

Dans ce travail on étudie les systémes de variations qui correspondent aux syst¢émes dynamiques a trois dimensions.
L’équation caractéristique du systéme de variation dépend des solutions partielles. La matrice de la partie gauche du systéme
de variation est la somme de deux matrices. Une matrice comporte le spectre du systéme linéaire tandis que ’autre représente
la solution partielle. On a prouvé deux théorémes par lesquelles se détermine le signe de la somme des exposants
caractéristiques pour les points de la trajectoire homo clinique.

Mots clés: syst¢tme dynamique, systéme dissipatif, syst¢tme de variations, orbite homo clinique.



