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Homoclinic Orbits in 3D Dissipative Systems 

Anatoly Andreevich Martynyuk1) 
Nelli Vladimirovna Nikitina1) 

The paper deals with a variational system corresponding to a three-dimensional dynamic system. The characteristic equation 
of the variational system depends on partial solutions. The matrix of the right-hand part of the variational system is a sum of 
two matrices. One matrix contains the spectrum of the linear system and the other one represents partial solutions. Two 
theorems, determining the sign of the sum of the characteristic exponents of a point on a homoclinic trajectory, are proved. 
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Statement of the problem 
HE problem of periodic orbit generations from 
homoclinic loops in three-dimensional systems was 

discussed in [1–12].Consider the system 

 / = ( , ), ( ) , ,n mdx dt F x x t R Rμ μ∈ ∈  (1) 

where 3n = , ( , )F x μ is a smooth function and mR  is a 
parameter space. We introduce into consideration a small 
deviation in the neighborhood of partial solutions  

( = 1, 2, , )ix i n… , = ( ) ( )i i ix x t x tδ −  ( = 1, 2, , )i n…  of 
equation (1). Consider ixδ  to be new coordinates. The linear 
system corresponding to system (1) in the coordinates ixδ  

 / = ( ) , ,nd x dt A x x x Rδ δ δ ∈  (2) 

where =( ) = / | ,x xA x F x∂ ∂  is called a system of variational 
equations [13]. By means of the analysis of the roots of the 
characteristic equation of the matrix ( )A x , one can study the 
mechanism of the formation of periodic and complex motions. 
We present the matrix ( )A x  of system (2) in the form of a 
sum of two matrices  
 ( ) = ( ),A x N M x+  (3) 

where the matrix N corresponds to the spectrum of linear 
system (2) which does not contain its partial solutions. The 
matrix ( )M x  corresponds to a part of the spectrum of 
equations (2) which contains partial solutions 1 2 3, , .x x x  

We cite some definitions and a theorem from [2]. 
We designate, by 1 2, ,γ λ λ , the characteristic exponents of 

the saddle equilibrium state of the point O  at the origin of 
system (1) so that 

1,2> 0 > .Reγ λ  

The unstable manifold uW  of the saddle O  is one-

dimensional and the stable manifold sW  is two-dimensional. 
The unstable manifold consists of three orbits: the saddle O  
itself, and two separatrices 1Γ  and 2.Γ  We assume that the 
system has a separatrix loop, i.e. 1Γ  tends to O  as .t → ∞ . 
The parameter μ  controls the loop splitting. The parameter sign 
is opposite to the sign of the saddle value, which equals to  

1 2= .Re Reσ γ λ λ+ +  

Theorem 13.6 (Shilnikov [2]). If the saddle value σ  is 
negative, a single stable periodic orbit L  is generated from 
the homoclinic loop for 0μ > . The separatrix 1Γ  tends to L  
as t → +∞ . For 0μ ≤  there are no periodic orbits in a small 
neighborhood U of the homoclinic loop. The trajectories tend 
either to L  (or to the loop Γ  for 0μ = ) or to O , or leave U  
as t → +∞ . 

This paper also deals with a homoclinic loop. By means of 
one approach, the signs of the saddle values are determined 
and the attraction of all points on the loop is established. 

On the existence of a homoclinic trajectory 
We assume system (1) as follows. 
Proposition 2.1. System (1) possesses three singular points. 

The singular point ( )0,0,0O  (a saddle knot with a negative 
saddle value) has the characteristic exponents 1 2 3, ,λ λ λ , where 

1 > 0,λ  2 < 0λ , and 3 < 0λ . There exists a neighborhood of the 
point O  that, according to the Grobman-Hartman theorem [1], is 
filled with saddle-knot points which go into the knot-focus ones 
so that 1 < 0,Reλ  2 < 0,Reλ  3 < 0λ . 

We make the following assumption on the matrix ( )M x  
Proposition 2.2. The characteristic equation of the matrix 
( )M x  possesses the following eigenvalues: one zero and two 

imaginary ones. The sum of the eigenvalues equals to zero: 
1 2 3( ) ( ) ( ) = 0.x x xλ λ λ+ +  

T 
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Theorem 2.3. For differential system (1) let the conditions 
of Proposition 2.1 and 2.2 be satisfied. Then, in the 
neighbourhood of the singular point ( )0,0,0O  of system (1) 
there exists a field of saddle-knot points which go into the 
knot-focus ones. The saddle value 1 2 3=σ λ λ λ+ +  obtained 
in correspondence with certain parameter values will be one 
and the same for all the points of three-dimensional space 
including all singular points.  

Proof. Under the conditions of Proposition 2.2 the saddle 
value of the trajectory points is determined by the matrix 

( )A x  according to the equation  

| ( ) |=| |= 0,A x E N Eλ λ− −  

where E is an identity matrix. The bifurcation process in the 
field of three-dimensional system (1) occurs in accordance 
with the Grobman-Hartman theorem [1]. The neighborhood, 
filled with the saddle-knot points so that 1 2 3= < 0,σ λ λ λ+ +  
goes into the knot-focus continuum. For the knot-focus 
domain 1 2 3< 0, < 0, < 0Re Reλ λ λ . The knot-focus loop has 
a value 1 2 3= < 0Re Reσ λ λ λ+ +  at all points of the 
trajectory. This value is specified by the roots of a linear 
system, then = = =O A Bσ σ σ σ , where Aσ  and Bσ  are the 
values of any points A and B, including the singular ones.  

Corollary 2.4. For differential system (1) let the conditions 
of Proposition 2.1 and 2.2 be satisfied and in system (1) a 
loop be formed. If this loop embraces all singular points, then 
a limiting cycle is generated from the loop.  

Proof. Theorem 2.3 shows that the loop has a negative 
value σ at all points. From the homoclinic loop with a 
negative value σ , such that 1 < 0,Reλ  2 3< 0, < 0Reλ λ , a 
stable periodic orbit is generated.  

Corollary 2.5. For differential system (1) let the conditions 
of Proposition 2.1 and 2.2 be satisfied and in system (1) two 
loops be formed. Then limiting cycles are generated from the 
loops, provided the loop orbits do not intersect.  

On system (1) we shall assume as follows. 
Proposition 2.6. The singular point ( )0,0,0O  of system 

(1) is a saddle-focus with a saddle value equal to zero 
( )1,2 32 = 0O Reσ λ λ= + .  

Proposition 2.7. The saddle value of the points of system 
(1) specified by the characteristic equation | ( ) |= 0M x Eλ− , 
is negative for 0x ≠  and all the points are of attractive 
character.  

Proposition 2.8. For 0x ≠  differential system (1) forms a 
loop.  

Theorem 2.9. For differential system (1) let the conditions 
of Proposition 2.6, 2.7 and 2.8 be satisfied. Then, in the 
neighbourhood of the singular point ( )0,0,0O  of system (1) 
a closed integral curve exists.  

Proof. Under the conditions of Proposition 2.6 and 2.7 the 
matrix ( )A x  has eigenvalues satisfying the equation 
| ( ) |=| ( ) |= 0.A x E M x Eλ λ− −  If the conditions of 
Proposition 2.8. are satisfied, a loop is formed with a negative 
value σ  and the attraction at every point. Such a loop 
generates a stable periodic orbit.  

We return to Theorem 13.6 [2]. In Theorem 13.6, a 
parameter μ  is mentioned, governing the loop splitting. The 
theorem was discussed in [4]. In this paper, we consider a 
principle of determining the sign of the saddle value of a 
homoclinic loop and the parameter values. This is because of 

the attractive character of the trajectory points. The 
applications are presented. 

Applications 
Application of Theorem 2.3. Example 1. Consider the 

Lorentz system  

 
/ = ( ),
/ = ,
/ = .

dx dt s x y
dy dt rx y xz
dz dt bz xy

− +⎧⎪ − −⎨
⎪ − +⎩

 (4) 

where ,b r  and s  are positive parameters ( )> 1r . In system (4) 
we introduce the small deviations ,xδ ,yδ  and zδ  from the 
partial solutions x , y  and z  and compile the variational 
equation  

 
= ,
= ( ) ,
= .

x s x s y
y r z x y x z
z b z y x x y

δ δ δ
δ δ δ δ
δ δ δ δ

− +⎧⎪ − − −⎨
⎪ − + +⎩

�
�
�

 (5) 

System (4) possesses the following singular points  

( )0,0,0O , 

( ( 1), ( 1), 1),A b r b r r− − −

( ( 1), ( 1), 1).B b r b r r− − − − −  

By the characteristic equation of system (5)  

 
3 2 2( 1) ( (1 ) ( 1) )
( (1 ) ( )) = 0

b s s r z b s x
s b r z x x y

λ λ λ+ + + + − + + + + +
+ − + + +

 (6) 

The characteristic exponents of the points in the field of 
three-dimensional space of system (4) can be determined. At 
point O , equation (6) becomes  

2( )( (1 ) (1 )) = 0.b s s rλ λ λ+ + + + −  

From it, we find  

 
2

1,2

3

= ( 1) / 2 (( 1) / 2) ( 1),
= (7)

s s s r
b

λ
λ

− + ± + + −
−

 (7) 

The singular point O is a saddle-knot with the saddle value 
= ( 1)s bσ − + − . We write the matrix equality in terms of 

variational equation (5). Correlation (3) is presented as  

 
0 0 0 0 0

1 = 1 0 0 .
0 0 0

s s s s
r z x r z x

y x b b y x

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − − + − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8) 

There is a matrix of the variational system (5) in the left-
hand part of equality (8). The first matrix in the right-hand 
part of equality (8) represents a spectrum of the linear system 
corresponding to system (4). The second matrix ( )M x  
corresponds to the part of equations (5) which contains the 
partial solutions ,x y  and z  and has the roots of the 
characteristic equation  

 2
1,2 3= , = 0i xλ λ± . (9) 

Note that the partial solutions , ,x y  and z  of the system 
of equations (5) are unknown. In system (4), there are several 
attractors. In Fig.1, a phase portrait of the limiting cycle of 
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system (4) is shown for the parameter values 
( , , ) = (8 / 3;153;10).b r s  By means of equation (6) and the 
numerical solution of system (4), one can specify the domains 
of the points of the saddle-knot character in the zero 
neighborhood. In Fig.1, the thick lines mark the totalities of 
the trajectory points of the saddle-knot character, and the thin 
lines indicate the knot-focus points for which 1 < 0Reλ , 

2 < 0Reλ , 3 < 0λ . Fig.2 shows two limiting cycles (the 
parameter values ( , , ) = (8 / 3;100;10)b r s . The spectrum of 
the characteristic Lyapunov exponents for the limiting cycle 
satisfies the inequality 1 2 3 < 0.Λ + Λ + Λ  

 
Figure 1. Limiting cycle of the Lorentz system  

 
Figure 2. Two limiting cycles 

The attractor alternative is a strange attractor emerging 
under the orbital loss of motion stability by the image point 
with respect to one of the singular points at transition (jump) 
to the motion with respect to the other singular point (points 
A  and B ). 

Application of Theorem 2.9. Example 1. Consider a system 
of three differential nonlinear equations (a generator with 
quadratic nonlinearity [4])  

 
2

= ,

= ,

= ( ),

dx mx xz ydt
dy xdt
dz b z xdt

⎧ − +
⎪
⎪

−⎨
⎪

− −⎪
⎩

 (10) 

where m and b  are positive parameters. The system has one 
singular point ( )0,0,0O . Introduce small deviations 

, ,x y zδ δ δ  from the partial solutions ,x y  and z  of system 
(10) and compile the variational equation 

= ( ) ,

= ,

= ( 2 ).

d x m z x y x zdt
d y xdt
d z b z x xdt

δ δ δ δ

δ δ

δ δ δ

⎧ − + −
⎪
⎪

−⎨
⎪

− −⎪
⎩

 

We write the characteristic equation of the system  

 3 2 2( ) ( ( 2 ) 1) = 0.b m z b m z x bλ λ λ+ − + + − + + + +   

At point ( )0,0,0O  the characteristic equation becomes  
2( )( 1) = 0.b mλ λ λ+ − +  

The characteristic exponents of point ( )0,0,0O  are  

2
1,2 3= / 2 ( / 2) 1, = .m m bλ λ± − −  

We prescribe the following values of the parameters  
 ( , ) = (1,1).m b  (11) 

The point O  is of the saddle-focus type with the saddle 
value = 0.σ  The matrix  

0
( , ) = 0 0 0

2 0 0

z x
M x z

bx

⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

corresponds to the characteristic equation 
2 2( 2 ) = 0,z bxλ λ λ+ +  

whose roots are 
2 2

1,2 3= / 2 ( / 2) 2 , = 0.z z bxλ λ− ± −  

The saddle value is = .zσ −  Let us show that the matrix 
( , )M x z  corresponds to the dissipative oscillator. Consider a 

linear system 

= ,

= 2 ,

dX zX xZdt
dZ bxXdt

⎧ − −⎪
⎨

−⎪⎩

 

which is identical to the dissipative oscillator 
2 2

2 2 = 0.d Z dZ bx Zdtdt
+ +  

Then the saddle value = zσ −  has a negative sign. 
According to Theorem 2.9, for the parameters chosen (11), 
there exists a periodic orbit in system (10). Figurse 3 and 4 
present a closed curve of system (10) in the projection on the 
coordinate planes. 

 

Figure 3. Projection of the limiting cycle of system (10) on the plane xy  
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Figure 4. Projection of the limiting cycle of system (10) on the plane xz   

Example 3. Consider a system of three nonlinear 
differential Chua equations  

 

3/ = ( ),
/ = ,
/ = ,

dx dt ax bx y
dy dt x y z
dz dt y

α

β

⎧ − +
⎪ − +⎨
⎪ −⎩

 (12) 

where , ,a b α  and β  are positive parameters. Though the 
Chua chain dynamics is widely described in literature [2, 14, 
15] we are intending to apply Theorem 2.9 to establish the 
existence of a homoclinic trajectory. System (12) possesses 
three equilibrium states: singular point ( )0,0,0O  and 

singular points ( = /AA x a b , = 0,Ay  = /Az a b− ), and 

( = /BB x a b− , = 0,By  = /Bz a b ). We introduce small 
deviations ,x yδ δ  and zδ  from the partial solutions ,x y  
and z  of system (12) and compile the variational equations  

2/ = ( 3 ),
/ = ,
/ = .

d x dt a x bx x y
d y dt x y z
d z dt y

δ α δ δ δ
δ δ δ δ
δ βδ

⎧ − +
⎪ − +⎨
⎪ −⎩

 

The characteristic equation corresponding to the variational 
system reads  

   
3 2 2 2

2
(1 ( 3 )) ( (1 3 ))

( 3 ) = 0.
a bx a bx

a bx
λ λ α λ β α
αβ
+ + − + + − + − +

+ − +
 (13) 

The bifurcation process in the system is associated with the 
variation of the coordinate x, since the characteristic equation 
depends only on the partial solution x . The characteristic 
exponents of the point O are determined in terms of the 
equation 3 2 (1 ) ( (1 )) = 0.a a aλ λ α λ β α αβ+ − + − + −  We 
prescribe the parameter values  

 ( , ) = (1/ 6;6); = ; (7,...,10,1).a b aα β ∈  (14) 

The requirement to parameters (14) is that the saddle value 
of point ( )0,0,0O  equals to zero. In order that the initial 
perturbations generate a closed curve with respect to the point 
O in system (12), the initial conditions should be chosen in 
accordance with the following estimates  

 | (0) |>| |, | (0) | 0, | (0) |>| | .A Ax x y z z≥  (15) 

Such a choice excludes the effect of the singular points A  
and B , which, similarly to the point O , form some motion of 
system (12). The choice of the initial conditions can be 
refined numerically (in the framework of inequalities (15)). 
The characteristic equation 2 2( 3 ) = 0bxλ λ α+  of the matrix 

( )M x  possesses the eigenvalues 1 2= = 0,λ λ  
2

3 = 3 .b xλ α−  
Zero roots are simple. Under the conditions of parameters 

(14) and the choice of the initial conditions (15), there exists 
an attractive periodic orbit in system (12) (according to 
Theorem 2.9). 

Note that the saddle value 1,2 3= 2 ,Reσ λ λ+  calculated in 
terms of equation (13) depends only on the coordinate x . In 
Fig.5, the dependence of ( )xσ  is shown. At point O , the 
saddle value equals to zero. Fig.6 presents a trajectory closed 
with respect to the point O  under the initial perturbations 

(0) = 1,7x − ; (0) = 0y ; (0) = 1,7.z −  

 

Figure 5. The graf ( )xσ  of the saddle value of the Chua system 

 
Figure 6. Limiting cycle of the Chua system 

Consider the behavior of the solutions in the Chua system, 
which are due to the singular points A and B. The points A and 
B can form closed curves excluding the point O . The points A 
and B are skew-symmetric. Therefore, consider motion with 
respect to one point only. The parameter β  can influence the 
location of the trajectories relatively to the points A and B. 
The main requirement is that the trajectories do not intersect. 
We relate with the point A a frame of reference Avyw  and 
compile the motion equations in new coordinates  

2/ = ( 2 (3 / ) ),
/ = ,
/ = ,

dv dt av bv a b v y
dy dt v y w
dw dt y

α

β

⎧ − − + +
⎪ − +⎨
⎪ −⎩

 

where = / , = / .v x a b w z a b− +  In the frame of reference 
Avyw , the singular point O has the coordinates: 

0 = / ,v a b−  0 = 0,y  0 = /w a b . Under the initial 
perturbations  

 | (0) |< / , | (0) | 0, | (0) |< /Ov a b y w a b≥  (16) 

the motion under the effect of the singular point A  is 
dominating in the system. The estimates of the initial 
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conditions can also be refined numerically (in the framework 
of inequalities (16)). At the motion of the image point in the 
neighborhood of the point A (or B), all points of the trajectory 
are attractive and with a negative saddle value. 

Fig.7 presents two limiting cycles in the frame of the 
reference Oxyz  with the initial conditions 

(0) = 0, 2; (0) = 0; (0) = 0,2x y z −  (a cycle with respect to the 
point A); (0) = 0, 2; (0) = 0; (0) = 0,2x y z−  (a cycle with 
respect to the point B), the parameter = 9.β  

 
Figure 7. Two limiting cycles 

Concluding remarks 
The paper deals with the bifurcation processes in three-

dimensional systems. Two theorems presented are associated 
with the problem of limiting cycle generations from 
homoclinic loops in three-dimensional systems. The first 
theorem establishes the existence of homoclinic trajectories in 
systems having in common a certain property of the topology 
of a three-dimensional system space: the saddle values are the 
same for all the points. The second theorem is associated also 
with variational equations. The two theorems are of sufficient 
character. A mathematical Chua model is considered as an 
example. 
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Homokliničke orbite u 3D disipativnim sisteminma 
U radu se proučavaju varijacioni sistemi koji odgovaraju trodimenzionalnim dinamičkim sistemima. Karakteristična 
jednačina varijacionog sistema zavisi of parcilanih rešenja. Matrica desne strane varijacionog sistema je suma dve matrice. 
Jedna matrica sadrži spektar linearnog sistema, dok druga reprezentuje parcijalno rešenje. Dokazane su dve teoreme, kojima 
se odredjuje znak sume  karakterisičnih eksponenata tačaka homokloničke trajektorije. 

Ključne reči: dinamički sistem, disipativni system, varijacioni sistemi, homoklinička orbita. 

Гомоклинические орбиты в 3D диссипативных системах 
В этой статье мы изучаем системы уравнений в вариациях, которые соответствуют трёхмерным динамическим 
системам. Характеристическое уравнение системы в вариациях зависит от частных решений. Матрица правой 
стороны системы в вариациях  является суммой двух матриц. Одна  матрица соответствует линейной системе, в то 
время как вторая матрица  представляет частное решение. Доказанны две теоремы, которые определяют знак 
суммы характерных показателей точек гомоклинической траектории. 

Ключевые слова: динамическая система, диссипативная система, система в вариациях, гомоклиническая орбита. 
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Orbites homo cliniques dans les systèmes 3D dissipatifs 
Dans ce travail on étudie les systèmes de variations qui correspondent aux systèmes dynamiques à trois dimensions. 
L’équation caractéristique du système de variation dépend des solutions partielles. La matrice de la partie gauche du système 
de variation est la somme de deux matrices. Une matrice comporte le spectre du système linéaire tandis que l’autre représente 
la solution partielle. On a prouvé deux théorèmes par lesquelles se détermine le signe de la somme des exposants 
caractéristiques pour les points de la trajectoire homo clinique.  

Mots clés: système dynamique, système dissipatif, système de variations, orbite homo clinique. 

 
 


