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Oscillators: Phenomenological Mappings and Analogies
First Part: Mathematical Analogy and Chains
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New analytical and numerical results of dynamics for both linear and nonlinear system with two degrees of freedom are
presented. For a mechanical chain system with two degrees of freedom, oscillations are investigated analytically and
numerically with corresponding comparing between free and forced oscillatory dynamics of linear and nonlinear system.
Also, energy analysis and transient energy between the mass particles in the system are discussed. Using Mihailo Petrovi¢’s
theory of the mathematical phenomenology elements, phenomenological mappings in vibrations, signals, resonances and
dynamical absorptions in models with two degrees of freedom — the abstractions of a different real system dynamics are
identified and presented. Mathematical description of a chain mechanical system with two mass particles coupled by linear
and nonlinear elastic springs and with two degrees of freedom is given. By analysis of corresponding solutions for free and
forced vibrations, series of related two-frequency regimes and resonant states, as well as dynamical absorption states, are
identified. Besides, by mathematical analogy and phenomenological mappings, the analysis of series of dynamics of other two
degrees of freedom models dynamics (torsional system, double pendulum system, double electrical circuit) is performed
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Introduction

N Reference [10] authored by Raskovi¢ D., the series of

examples of electromechanical analogous vibration chain
systems are presented. Mathematically described homogeneous
chain dynamics and the corresponding system of linear ordinary
differential equations are solved by a trigonometric method for
different cases of both end conditions.
In References [1-3] different results of investigation of both
free and forced oscillations of the system dynamics are
presented, as well as the dynamics of hybrid systems which
mathematical descriptions are analogous with mathematical
description of the chain system dynamics.
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Figure 1. System with two degrees of freedom. a* A mechanical system with
two mass particles masses iy, coupled by nonlinear elastic springs

rigidities ¢;,¢;, and two degrees of freedom expressed by generalized
independent coordinates - translator displacements ., , k=12; b* A
mechanical tensional system with two discs with mass axial inertia moments
J,» k=1,2 coupled by nonlinear elastic shafts with torsional rigidities ¢;,C;
and two degrees of freedom expressed by corresponding generalized
independent angular coordinates — angles of disc rotations @, k=12; c* A
mechanical double-pendulum system with two mass particles with masses
m, » k=1,2 on the same length ¢ coupled with nonlinear spring with rigidity ¢,
and two degrees of freedom expressed by generalized angular coordinates ¢,
k=1,2 and d*. An analogous electrical circuit system with two coil with
inductances L coupled by a nonlinear capacitor with the capacitances ¢, ¢,

and two degrees of freedom expressed by generalized coordinates — electrical
charge of a capacitor ¢, £ = 1,2 or velocity of generalized coordinate i, = dg;
/dt, k=1,2 intensity of electric current flowing through the branch circuits.
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The qualitative and mathematical analogy presented in
the books "Phenomenological mapping" [8] and "Elements
of mathematical phenomenology" [9], both written by M.
Petrovi¢, are the theoretical basis of numerous results
obtained in different scientific areas. See systems presented
in Fig.1.

References [5-7] by Mitropolyski contain series of
different asymptotic methods of nonlinear mechanics
known as the Krilov-Bogolyubv-Mireopolyskiy asymptotic
method—applicable for investigation of the nonlinear
phenomena around known solutions of corresponding linear
or nonlinear differential equations.

In the following we shall analyze linear and nonlinear
vibrations of a nonlinear system with two degrees of
freedom oscillations together with a comparison of
vibration properties and related phenomena [4].

Vibration system with two degrees of freedom

Let us consider linear and nonlinear dynamics of a two
mass particle chain system in free and forced regimes. In
Fig.2. a* a chain mechanical system with two particles

masses m, , coupled by nonlinear elastic springs rigidities
¢,,c, and two degrees of freedom expressed by

corresponding generalized independent coordinates -
translator displacements #, , k=12 and with both fixed

ends is presented. We propose that coefficients of nonlinear
elasticity of the springs are cubic.

Then, we can investigate two cases of this two degrees
of freedom chain system: 2. a* both ends. of the chain are
fixed and 2.b*one end of the chain is fixed and the second
is free.

Kinetic and potential energies, for the cases when a
chain is with both fixed ends (a*), or the left one fixed end
and the right one free (b*), are:

1. a* 1. b*
E, = Lmd + L myi E, = Lmad + L myi
k 2 141 2 242 k 2 141 2 242
Ep:%CO (u1 )2 Ep:%CO (ul )2+
%cl(uz—u1)2+ +%cl(uz—ul)2 0
1 2, 1=~ 4 1=~ 4
+§C'2 (Hz) +ZC1 (Mz_ul) + 42 o(ul) +
1
44 (

Figure 2. Two degrees of freedom system dynamics in like chain: (a*) a
chain with both fixed ends and (b*) a chain with the left one fixed end and
the right one free end. In both cases the external single frequency

excitations: the first K (¢)=Fycos(t+9,;) and the second

F, (t) =Fy, cos (ta + 9, ) are applied to the corresponding mass particles.

Differential equations of the linear two-mass particle
dynamics:

1. a* 1. b*

mll:il—cl (uz—ul )+C0 (ul) =0 mliil—cl (UZ—UI )+C() (ul) =0

mzil'z—C2 (—u2 )+C1 (uz—ul) =0 mzii2+cl (uz—ul) =0 (2)

The previous system of differential equations presents
free linear oscillations, which appear under the initial
perturbations of the equilibrium state, by initial perturbation
of the coordinates and initial velocities. Initial conditions of
a linear system can be defined at the initial moment # =0,
uk(O)zuOk and dk(0)=d0k ,k: 1,2

Next, we continue with the analysis of vibrations of the
system with both fixed ends as in Fig.1*a. Corresponding
matrix of inertia coefficients and rigidity coefficient for
corresponding linear two mass particle chain systems, with
defined kinetic and potential energies (1*a) as well as by a
system of differential equations (2), (see Fig.2.a* ), are:

A:(ml mzj C:(co+cl -, ) 3)

—Cq c+o
Frequency equation for the linear system defined by a
system of differential equations (2.a*), by using matrices
(3) (see Refeence [42] by Raskovi¢) is in the following
form:

f(e?)=|c-w?A|=0 4)
The roots of the frequency equation f (a)z) =0, (4) are:

: [(cl+cz)+(co+cl)}

601,2 - 2m2 2m|

(5)
1\/{(01 +¢) + (<o +CI)T _ G + G €16y

2m2 2m1 mym,

and present a square of eigen circular frequencies of
oscillatory linear chain system with two mass particles and
with two degrees of freedom.

Cofactors of the considered system are:

Kgi) =C Kg) =cy+¢ —oim (6)
and they are obtained from a determinant (4) in the
frequency equation as co-factors of the second order and
corresponding column for corresponding eigen circular
frequency (characteristic number).

General solutions for mass particle displacements, taking
into account only free vibrations components (modes) are:

u, (t)= K&)AI cos(mt +ag )+ Kﬁ)Az cos(mt + ),

k=12 (7

where 4, and ¢y, s=1,2 are integral eigen main

coordinate amplitudes and phases as unknown constants
determined by the initial conditions.

Initial condition: Initial displacements u; (0)=uq,
Initial Velocities 1 (0)=1o;, k=1,2. For the easiest
calculations, we transform the solutions for displacements
(denoted by: A (=)4, cosa,, and B (=)A sine,,, s=1,2) in
the form:
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s=2
w (t) = Zng) (4, cosmyt+B,sinmyt), k=12 (8)

s=1
and after using the initial conditions:

s=2

s5=2
AR 2 Y oBKS) =g ©
s=1 s=1

Since the modal matrix of the linear system (2.a*) is a
matrix of determinant of previous both subsystems of the
system (9), algebraic equations, along independent
unknown eigen coefficients 4; and B,, s=1,2 it is in the
form (see Reference [10] by Raskovic):

AV s=12 KW g®
R=(k® 2 _ | B 210
( 2k )—> k=1,2 [Kélz) Kg)

8]

) j;tO (10)
—wym

Then the unknown constants 4; and B;, s=1,2 can be
obtained by using the Cramer rule, in the following form:

G
Cyt+C — a)lzml Co+C

2 2
IR| 4, = Kzz)”m K£1)u02 = (Co o —om )1401 —ClUpy

‘R‘ A2 = —Kglz)u()] - Kéll)uoz =
_(Co +o—aofmy )um + Cidpz

(1)

IR| B, —a( g)“m Kg)’floz):

é[(co +¢ —a)22m1)5101 _CIL.‘OZJ

‘R‘BZ = i(_Kglz)um —Kgll)aoz) =

é[—(% +o —ofm )”01 + CI”OJ

Solutions of free displacement vibrations for
known initial conditions are in the form:

Uy (t):LK(l) (Kg)um K;?)uoz)cosa)lt‘i‘

‘111‘1(513( K(z)u01 Kgll)uoz)cosa)zt+

(12)
+ kW é(z@?am — Kg)uoz )sin ot +

vl KL (ki — Ky st
@,

k=12

Previously obtained solutions are two-frequency and
present a sum of collinear asynchronous two modes each
with one of the obtained eigen circular frequencies defined
by expressions (5).

By using the expressions (5) and (12) for the numerical
data m=1[kg], m,=1.5 [kg], co=0.5 [SN/cm], ¢;=1 [5N/cm],

¢,=0.5 [SN/cm] the following eigen circular frequencies are

obtained: @ :O.63[sec 1] and @, :1.45[sec IJ , and

in Fig.3, time-history graphs for both mass particle
displacement for free linear vibrations (a*) and
corresponding phase trajectory graphs (b*) are presented
using pure analytical expressions and MathCad software
tools.

Free linear vibrations of a double mass chain linear
system are with constant total mechanical energy, because
system is conservative, and the sum of kinetic and potential
energies is constant and equal to the initial values of total
mechanical system energy:

E=E, +E, =E,=E +E = const (13)
Total mechanical energy of the linear system at the
arbitrary moment of the system motion:
. . 2
E= %mlulz +%m2u22 +%co (u)
(14)

2 2
+%Cl (U2 —ul) +%62 (U2)

Total mechanical energy of the linear system at the
initial moment:

. . 2
E, = %mlugl +%m2u§2 +%Co (u01)

(15)
+%Cl (”02 —”01)2 +%02 (”02 )2
which is the initial total energy of equilibrium system
perturbation and which caused free oscillations of the linear
system.

Solutions of the system of linear differential equations
(2.a*) for linear system mass particle displacements are
obtained numerically, too, by a direct numerical integration
of these differential equations. The simulated results were
performed using the MATLAB program package. The
differential equations derived from the model were
integrated using the odel5s solver. All numerical
simulations were performed with the absolute and relative
tolerance values equal to 1 x 10 and 3 x 1072
respectively.
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Figure 3. In a* and b* typical time history graph - evolution of two

coordinates-mass particle displacements u; (¢) , k=1,2 and c* and d*

corresponding their velocities v, (#) =1 (1), k=1,2.
In Figures 3.a* and b*, typical time history graph -

evolution of two coordinates-mass particle displacements
uk(t), k=12, and in Figures 3.c* and d* corresponding
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their velocities vk(t)zuk(t), k=12, for the given

parameter values m=1[kg], m,=1.5 [kg], ¢,=0.5 [N/cm],
¢1=1 [N/em], ¢,=0.5 [N/cm] are presented.
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Figure 4. Phase trajectory portraits of two-mass particle displacements and
velocities for the same parameter values as for the system time —history

graphs presented in Figures 3.a* and b* phase trajectories (ul(t),uz(t))
and (v (1)=u(r),v,(t)=1u,(¢)) and in c* and d* phase trajectories
(1 (0) v, () = iy (1)) and (uz (1), (1) =2 (0)) -

In Fig.4 the corresponding phase trajectory portraits of
two-mass particle displacements and velocity for the same
parameter values as for the system time —history graphs
presented in Fig.3, given as: m=1[kg], m,=1.5 [kg], cx=0.5
[N/em], ¢;=1 [N/em], ¢,=0.5 [N/cm], are presented. In
Figures 4. a* and 4. b* the phase trajectories (u;(¢),u, (7))

and (v (¢) =1 (¢),v,(¢)=u,(t)) are presented; In Figures
(1 (£) 1 (1) =1y (¢)) and

(uz(t),v,(t)=u,(t)) are presented. Quasi-periodic, two-

4.c* and d* phase trajectories

frequency behavior of the mass particle displacements is
observed, corresponding to moving over the torus manifold
of the system in phase space and corresponding subspaces —
phase planes.
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Figure 5 . Power spectrum for the system from time series of the first
coordinate u(¢) — the first mass particle displacement in the interval of time
values between 0 and 10000, and time delay between points equal to 0.1

Power spectrum, presented in Fig.5, is calculated for this
system from time series of the first coordinate () —the
first mass particle displacement in the interval of time

values between 0 and 10000, and time delay between points
equal to 0.1. Hence, 10° data points were used for the

calculation. Power spectrum is given below and the
obtained sharp peaks are in agreement with a quasi-periodic
nature of the system. Peak positions are in almost ideal
agreement with the calculated values @ = 0.64, w, = 1.46
for given parameter values.

Forced vibrations of the linear system. Resonance
and dynamical absorption

Differential equations of the linear two mass particle forced
vibrations for the case that one external excitation Fy, cosQ,t
is applied to the first mass particle and Fj, cosQ,7 to the

second mass particle are in the following form:

mytiy — ¢y (uz —u,)+co (ul):Fm cosQt

Mty — ¢y (—uy )+ ¢ (uy —1y) = Fp cos Q¢ (16)

Where Fy,, k=1,2 external excitation amplitude and Q,,
k =1,2 external excitation frequency.

For obtaining solutions for forced linear vibrations the
previous system of differential equations is separated in two
and expressed in the matrix forms:

A{?ﬁ}m{ul}: {Fm}cos(glﬁem) (7

U, U, 0

A{?l}wLC{ul} :{ 0 }cos(ta+6’02) (18)
U, U, Fy,

Particular solutions of the previous subsystem are
components of the particular solution of governing system
of which solutions are obtained using principle of
superposition of solutions for free vibrations and particular
solutions of the previous subsystems.

Particular solutions are proposed in the following form:

{ulp(l)(t)} _ {g}cos(ﬁltwm)

1) ()

and

u2p(2) (t) 2

After introducing the proposed solution in matrix
differential equations (17) and (18), we obtain
corresponding algebra subsystem along the unknown
amplitudes ¢, and D,, k=1,2, and it is possible to
conclude that both algebra subsystems posses the same
determinant of the subsystem in the following form:

{ulp(z)(t)}z{ﬁ'}cos(92t+t902) (19)

A(Qz) = (co +¢ —szl)(cl —szz)—q2 #0  (20)

The unknown amplitudes C, and D,, k=12 of the

particular solutions of algebra equations are obtained by the
Cramer rulein the following forms: for no resonance cases

A(Qz);«to or A(Qf)io and A(Q%)io for Q, # o, and

ina)s,S:LZI

Fy (Cl +¢, - lemz) 51 (le)

-y A

B
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s
1 1

Do)l e Z—)Q;ml) _ ig?))
2 2

F,e, DI(Q?
Dl(Qg): A(Oézlj: AI(QZZi (22)
2 2

In Fig.6(a*) the frequency graph of determinant
f (Qz ) = A(Qz) for the linear system forced vibrations are
Fig.6(b*) the
g(Qz) =1/ A(Qz) of resonant frequencies and asymptotes

E

presented. In frequency  graph

of the amplitude frequency graphs for a double mass
particle chain system are presented. From the frequency
graphs, it is possible to see two asymptotes at the resonant
frequencies with values equal to eigen circular frequencies
of free linear vibrations. Number of asymptotes correspond
and are equal to the number of degrees of freedom of the
linear system.
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Figure 6. (a*) Frequency graph of determinant f(QZ)= A(QZ) for the

linear system forced vibrations, and (b*) Frequency graph
g(Qz): 1/ A(Qz) of resonant frequencies and asymptotes of the amplitude

frequency graphs for a double mass particle chain system.
In Fig.7 the amplitude-frequency curves C, (le ) and

C, (Qf) are shown for forced vibrations of the first mass

particle (a*) and the second mass particle (b*) for the case
that a single frequency external excitation is applied to the
first mass particle of the two mass particle chain linear

system. From the amplitude frequency curve C; (Qf) for

the first mass particle, at which the external single

frequency excitation is applied, we can see two resonant

frequencies Q7. and Q2 , and two asymptotes

C, (Q2 )_>oo, and also, one frequency 37, at which the

1,2res
dynamical absorption appears, C, (lea): 0.
From the amplitude frequency curve Cz(Qf), for the

second mass particle at which there is no external single
frequency excitation, we can also see two resonant
frequency and two vertical asymptotes, but no frequency at
which the dynamical absorption appears. We can conclude
that in the forced regime at the amplitude — frequency curve
Cl(Qf) of the first mass particle loaded by the external

single frequency excitation appears at one frequency
dynamical absorption, but in the frequency curve Cz(le)

for the second mass particle no loaded directly by the
external excitation there is no frequency at which appears
the dynamical absorption. This is a fascinating dynamical
state and single event and when directly loaded mass
particle in forced regime with zero initial condition this
mass particle is in the forced rest, and the second mass
particle no directly loaded is in the forced vibration regime.
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For €=, | resonance case term H(w,t)—> o

(0,06, (0} o
t .
H(w,,t)= 262124&2]; ZA’Z‘: sin(w,,t +6,,)

H(w,,t)

; VA/\/\/\M
TV :
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Figure 7. Amplitude-frequency curves: a* CI(QIZ) and b* CZ(QIZ) for

forced vibrations of the first mass particle (a*) and the second mass
particle (b*) for the case that single frequency external excitation is
applied to the first mass particle of the two mass particle chain linear
system. ( c*) Graph of increasing term in expression for mass particle

(wMt)ék (w/\le)

sin (@t + 6,
20307 (o}, ) (@t + )

displacements, H ()=

Particular solutions of a matrix differential equation for
two frequency forced linear vibrations and for no resonance
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cases A(Qz)io or A(Qf);ﬁO and A(Q%):&O, for

Q #w, andQ, # o, , s=1,2 are:

Fop (cl +c; —lemz)

U, (t)= cos(Qt+6,
lp() A(le) ( 1 01) (23)
Foocy
+—2—<cos(Qat+6y)
A(03)
Foie
Uy, (t)= cos(Qt+6y )+
217() A(le) (1 01)
24
F02(00+01—Q%m1) @4)

A(Q%) cos(Qyt+6y)

General solutions taking into account free vibrations
components of mass particle displacements are four
frequency vibrations, two frequency with eigen circular
frequencies modes and two frequency forced with two
external excitation frequencies in linear vibration regimes

and for no resonance cases A(Q2>;t0 or A<le)¢0 and
A(Qi);‘t 0 for Q # @ and Q, # @ ,s =12 are:

s=2

u, (t):z Kg';)(AS cos w,t+B; sin at ) +

s=1
Fo (Cl"'Cz_lemz)
+—

(o)
Fyoal

03)

cos (O 1+, ) (25)

+ COS(ta + 902)

5]

S=

uy (1) =

5=

Foa
A(Q7)
Foy (Co +q _ngl)

a(93)

K5 (A cosa,t + By sin )+

—_

+ cos(Qyt+ 6y )+ (26)

cos(Qut+6y,)

Initial conditions: Initial displacements u, (0):u0k and
initial velocities ,(0)=1,,, k=12. Unknown integral

constants A4, and B,, s=1,2 must satisfy the following
conditions:

=2 2
| : Foyy (Cl +c, —Qim,
AXK(S) =Uy — COS(H()])
s=1 . A(le)
Fyocr
——>——cos(6,
a() %)
. A K(Y) _ FE)ICI
B8y = Upy — A(QZ)COS(HOI)
ol Yo 7)
_Foz (Co +o —CQomy cos(6n)
A(Q%) 02

s5=2 2
Foi (Cl +c; = mz)
a)stK(S) :L.l()l + Sin(g()l)
s=1 . A(le)
Foggzcl .
sin (6,
CINS
s=1 F Q
a)SBSng'C) =1lig, — AOIQIZCI sin(6p; )
o (%) (28)
FypQ, (Co +o —Qm ) sin (6hn)
- 02

A(Q3)

As the modal matrix of a linear system is a matrix of
determinant of the previous both subsystem algebra
equations (27) and (28) along independent unknown eigen

coefficients 4 and B_,s =1,2 in the determinant form of

modal matrix defined by (10) and using the Cramer rule,
and for no resonance cases A(QZ);to or A(le)io and

A(Qé)?‘é Ofor O, # w, and Q, # w,,s =1,2, we obtain:

‘R‘AI = Kg)“m —Kg)uoz

2 61 (le) ~1 (Q%)
_K§2)<A(le) cos (6 )+ A(Q%) cos(6’02)>+
G (@F) D, (03)

(2)
+K cos (G, )+
21 < (le) ( 01)

‘R‘Az = _Kglz)um —Kgll)uoz +
G(Qt)

% <A(Qf) cos (G )+ A(Q%) cos (6, )>+ (29)
+K§1}><52(912) D, (%)

A(le) cos (6 )+ A(Q%)

R|B, = é(Kgmm ~ Ky )+ éKg?

79161(Qf)sin(6’ )+7QZZ51 (Q%)sin(ﬁ ) )+
A(Qz) o1 A(Q%) 02

1

D

cos (6, )>

QG (7). Q,D,(Q3)
+C;Kg><Msm(em%sm(%)>

R|B, = -(~K oy ~ Ky ) +

~ 2 N 2
L g <Q‘C1(Q)l) sin (6, }inL(Qz)sin(ﬁoz )>» (30)

, A(QF (%))
L e [ QG (QF) 00 (93)
+£K21 Wsm(é’mwsm(é’oz)

Solution for the first mass particle forced displacement
vibrations for the known initial conditions and no resonant

case, when A(Qz)i 0 or A(Qf);t 0 and A(Q2)%0 for
Q #w, and Q, # @, ,s =12 is in the following form:
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‘R‘ U (t) = Kg ) ( g)“m Kg)uoz )005 ot + Kg) ( glz)“m Kg)uoz )COS ot +

+K§ll) i(Kﬁg)uOI _Kgl)qu)sln a)lt'f' Kél) L( Kéz)u()l Kgll)l.loz )Sln 602[ -

- -
—Kéll)Kg)<Al((§§))cos O F——~ cos (602 >cosa)1!—
(o .
_Kgll)Kg)< AZ((QIZI))COS(QOI cos 6’02)>cosw1t+
- (o .
+K§?)K§12)<Al((glzl)) cos (O H——+- cos (602 >cosa)2t+
Ales 13 Q3)
+K§?)K§ll)< Az((lel)) cos( F1 gy 2 COS (62 ) Jcos wyt +
Q,C (@} Q,D, (03
+K @LKg) <IA('§(212)1)sin(6’01 %sm (6h2 )> sin ayt+
w3 Lk Min(& y%sin(a ) )sin o+
21 o 21 A(Q 01 A(Q%) 02 2]
2 1 Qlél 12) . szl(Q%) €1y
+K5; EKzz A(Qf) sin (6, ) + A(Qz) sin(6y, ) )sinw,t +
Q.G (O} Q,D, (3
+K§?) C;Kg'l)< IA(ZQIZ )1 )sin(901)+2A(2(£§)2)sin(002 )>sin wyt +

For (Cl +o —lemz)

A(Q7)

Resonant regimes appear when the external excitation
frequency is equal to one of the two eigen circular frequencies
of the basic system. After analysis of the component terms in
general solutions, see expression (31), we can conlude that the
expression contains the terms corresponding to pure free
vibrations with eigen circular frequencies @,, s=1,2 and
terms depending on all four circular frequencies, two eigen
circular frequencies w,, s =1,2 and two external excitation

frequencies €);, k=1,2. Lat us separate the term

corresponding free two frequencies vibrations of the first mass
particle displacement:

‘R‘ul free) (t Kgll (

(2
K3y 22 ”01

1

um KZ] uoz)cosa)lt+
21 M02 )COS a)zt +
(32)

( 2 ”01 Kzl)“02)51na>1f+

2 1 . . .
gl) E(—ng)uO] — Kgl)uoz )Sln a)zt

Terms depending on all four circular frequencies,

cos( Q7 +6y, )+ Fooc cos(Qut+6)

A(€3)
denoted in a sum by u;,(¢), for no resonant case, when
A(Qz);eo or A(Qf);to and A(Q;);to for Q # o, and
Q,#w,,s=12, between which are two eigen circular

frequencies o,, s=1,2 and two external excitation
frequencies Q,, k=1,2, in the form:

Dy (9
IR|u; 5 (1) =— SRK§?<AI(( 22)c05(002)>cosa)lt—

2

D Q
(1 2 2
—KYKS < $(6h2)

cos at +

NI\)

[SY )
\_/\_/

Q

_U*>

+K21 Kglz) cos (6, ) Jcos mnt +

5

:)
(Q%
a(e3)

0,0 (Q3)
K(I)LK(Z) 21
+K5 P 22< A Qz)

~—

+K Pkl cos (6, ) |cos mnt +

/\/\
lO

sin (6, )> sineyt +

—
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Q,D,(93)
+K(1)LK(2) Lsin O, sin @t +
21 o 21 A(Q%) (02) 2]
Q,D;(Q3)
+K(1)LK(2) Lsin o, sin @t +
2 gy N2 A(Q%) (62) @
Q,D, (O}
+K§11)1K£?)< 2 2(2 )sm(c902)>sina)lt+
2 AlQ
ﬂ (2) ) (33)
Q,D (O3
(2) 1 (1) 241 2 .
+K;7 —K sin (6, sin m,t +
21 22< A(Q%) ( 02)> 9]
,D, (93)
(2) 1 (1) 2 2( 2 . .
+K;7 —K sin (6, sin @t +
21 21 < A(Q%) ( 02) 2

As it is visible from the expression (32), terms expressing
component of the first mass particle displacement, denoted by
u, (t) for the forced vibrations are four frequency vibrations,

two frequency with eigen circular frequencies modes and two
frequency forced with two external excitation frequencies, in
linear vibration regimes and for resonance cases A(Qz) =0

or A(Qf):O and A(Q%)io for Q =0, =0, and

Q, # m;, s =1,2 contain terms with a value: 0/0, then we can
separate a sum of the terms denoted as
Ui 21re: (1) = [“1,2 (f)]QI=WM = g :
particular solution for the mass particle forced vibrations and
known initial conditions contains, in the first part, terms from
the expression for free vibrations with the finite elongations,
and with three eigen circular frequencies and in the second

For the resonant case, a

part, a sum of the terms, now denoted by u; ,.,.. (t,le),

depending on the set of eigen circular frequencies of firee
vibrations and of the external excitation circular frequency

Q' =0, =0, M=5s=12.

For the case when an external excitation circular
frequency Q, is equal to one of the eigen circular
frequency of free vibrations Q; =@, , from the set @,
Qf:@j{:a)j, M=s5=12 a sum of the terms from
solution denoted by [u,)z;,,.ez (t,le )]Q

2 _0 .
value [ul,z;lm (t,Q, ):|91sz =0 and is necessary to apply

takes undefined
1=0Mm

the L'Hopital's rue to find the limit of this expression value
|:u1,2;1rez (to le ):|lea)M = hm u1,2;1rez (taQIQ) (See Ref

Q- opy
[13]). For the resonant case, the obtained limits of
. 2 . .
eXpIessions 5.1, (t,Ql) contain terms in the

Z]e (a),zw )
204 A?) (a)fl )
which are oscillatory with increasing amplitudes with time
and tends to be infinite with time ¢ — oo . This is visible in
Fig.7.c*.

For numerical integrations we transform the previous
system for forced vibrations in the following:

following form H(awyt)= sin(wpt + 6y )

vi =ty myyy =+c (uy —uy ) —co (uy )+ Foy cos Q¢

Vy, = lz.lz mz\.)z =+C) (—uz)—cl (l/lz —l/ll)"rF()z COSta (34)

Typical time history evolution graphs ul(t) are given

below in Figure 8. for F;=0.1 and F(;,=0.15 and two cases
are given: one corresponding to resonant frequencies
Q =0, Q =0, in Figure 8. c¢*, and the other for non

commensurable frequencies Q =@ -7, Q,=w,-7 In
Figure 8. a*and b*.

0 20 40 60 80 100 20 40 60 80 100 o

. 500 1000
Time, sec Time, sec Time, sec

a* b* c*
Figure 8. In a* typical time history graph - evolution of the first
coordinate-mass particle forced displacements ul(t) under the external

excitation applied to both mass particle. b* and c* Resonant case.

In Fig.9 the phase trajectory portraits (u;(),u, (¢)) of
two-mass particle forced displacements for equal parameter
values as for the system time - history graphs presented in
Figures 8 a* and 8 c¢* are presented. In Fig.9.a* the phase
trajectory (u (¢),u, (¢)) for no resonant forced oscillations

and in Fig.9.b* phase trajectory (u, (),u, (7)) for resonant

forced oscillations in a bounded interval of time are
presented, and visible that elongations increase with
duration of time interval in which system is under the
external excitation loadings.

a* b*
Figure 9. Phase trajectory portraits (ul(t),uz(t))Of two-mass particle

forced displacements for the same parameter values as for the system time
history graphs presented in Figures 8 a* and 8 c*. a* Phase trajectory
(ul(t)’ u, (t)) for no resonant forced oscillations and b* Phase trajectory

(ul(t)7u2 (t)) for resonant forced oscillations in a bounded interval of time.

Nonlinear free vibrations of two mass particle
chain system

Nonlinear differential equations for free vibrations of
two mass particle chain system are in the following form:

mlii] —C (uZ_ul)—El (uZ—ul)3+Co(M1)+Eo(ul)3 =0

mzil.z —Cy (_Mz)_Ez (—u2 )3 +
(35

+C (uz _u1)+51 (U2 —u1)3 =0

Free nonlinear vibrations of a double mass chain system are
with constant total mechanical system energy, because the
system is conservative, and a sum of the kinetic and potential
energies is constant and equal to the initial values of the total
mechanical system energy:



HEDRIH,K., etc.: OSCILLATORS: PHENOMENOLOGICAL MAPPINGS AND ANALOGIES — FIRST PART: MATHEMATICAL ANALOGY AND CHAINS 35

E=E,+E, =E; =E;,+E,, =const. Total mechanical

energy of the nonlinear system at the arbitrary moment for
free vibrations is:

Ezémluf+%m2u§+%co(ul)2+%cl(u2—u1)2
(36)
Lo () + 16 () +1a (wy—u) +16 ()
2 2 2 4 0 1 4 1 2 1 4 2 2

We propose that nonlinear free vibrations of two mass
particle chain systems with small nonlinearities are small
and that approximation of the solution and nonlinear
circular frequencies of nonlinear modes is possible to
obtain in the first approximations.

For obtaining the first asymptotic approximation of the
solution of the system of ordinary nonlinear differential
equations, we start by a solution of the corresponding
linearized system (see part 1, solutions (7) and (8)) in the
following form:

u(t)= K;ll)Al(t)cos D, (¢)+ Kg)Az(t)cos(DZ(t)

U, (t) = Kglz)Al (t)cosq)l(t)"' Kg)Az(t)COS(DZ(I) (37)

where amplitudes 4() and 4(¢), and full phase
@, (1)=wt+¢() and @,(r)=aw,+¢,() are the functions of
time. We apply the Lagrange’s method of variation constant
and method of averaging, under the condition that the first
derivatives of the proposed approximation of the solution
are equal as these functions are constants (see reference [5-
7]). After introducing the first and the second derivatives
into the system of nonlinear differential equations (35) for
the simpler case that the first and the third spring are
nonlinear elastic, and the middle one is linear elastic

~ C
¢ =0, —Y=ek, and
m

(introducing denotations for

& - &k, , with no loose of generality, but for the simpler
ny

expressions), we obtain two new additional conditions.
Now we have four conditions along the unknown
derivatives of the amplitudes 4(;) and 4/(s), and

difference of phases ¢(¢) and ¢,(z), and it is possible to

obtain the following system of four ordinary differential
equation in the following forms:

esin®, (1)
o [KIKS - KK

4 ()=

3
<KOK§§> [ K84, (1) cos, (1) + K4y (1)cos @ (1) >—

esin® (1)
[ KK - KKY]

<K2K§? [ K 4, (1)cosy (1) + K& 4y (1) cos @, (I)T>

o (1) = gcos D, (1)
A (1) KKS) - KKY |

<K0K§§> (K8 4, (1) cosy (1) + K& 4y (1) cos @, (t)]3>—

B gcos D, (1)
o () KK KK |

3
<K2K§f> (K04, (1)cos @, (1) + K, (1) cos @3 (1) >

esin®, ()

4, (1) =
on [ KOKD KK

<K0K§;> (K8 4, (1) cosy (1) + K& 45 (1) cos @, (t)]3>—

~ esin®, ()
o [KOKD - kUKD ]

3
<K2K§12) [Kglz)Al (1)cos @, (1)+ K2 4, (£)cos ®, (t)} >

gcos D, (1)
on s (O KUK~ KUK

P (1) =

<KOK§‘2> [Kg'l)Al (£)cos @, (1 WK ) 4y (1) cos @, (t)T>»
(38)

~ ecos®D; (1)
on s (O KUKD — KIKD

3
<K21<§;> [ K84, (1) cos, (1) + K2y (1)cos 0 (1)] >

Then, to the previous system the averaging actions are
applied along the full phase @ (/)=ws+4() and

(Dz(l): wzl+¢2(l) in (Dl(l)e [0,272'] and
®,(¢)e[0,27] and the system of the averaged differential

intervals

equations is:

A(t)=0  4(t)= 4(0)= 4, = const
4,(t)=0 Az(t): Az(O): Ay, = const
- 35K0K£]1)Kg)

sn | KEK — KK |

2 2
(&) +2(xa0)) |-
~ 3, KK

son| kG -k |

H(KSZ)AI () +2|(K 4 (t))z—H

(1)

(39)
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kUKD

Son [ KWK~ KOKE]
[2(K§11)A1 (z))2 +(k9 4, (t))z}—
oy

8y (1) KY K - KGR |

[2(1{92)141 (z))2 +(k5) 4, (t))z}

Two circular frequencies of the nonlinear free vibrations
in the first averaged approximations are:

:d)l (t):a)l +¢1(t)
and @y yontinear = P2 (1) =@, + ¢, (¢). It is possible to

o (1)

@y nonlinear

conclude that free nonlinear vibrations of two mass particle
chain in the first approximation oscillate with two
frequencies which are nonlinear functions of the initial
nonlinear mode amplitudes, and that amplitude are constant
in the first approximation during the vibrations and equal
to the initial values.

Numerical experiment over the system of nonlinear
differential equations (35) for free nonlinear vibrations is
given with the parameter values m;=1[kg], m,=1.5 [kg],
cp=0.5 [N/cm], ¢;=1[N/cm], ¢,=0.5[N/cm], as before and
¢ ¢=10.005 [N/ecm’], é,=0.01, &,=0.005 [N/cm’].

ci
b ko RN w

0 20 40 60 8 100

2 4 4
Time, sec FreQuency sec

a* b* c*

Figure 10. (a*) Typical time history graph - evolution of the first mass
particle coordinate-mass particle displacement ul(t) for free nonlinear

vibrations. (b*) Phase trajectory portrait of two-mass particle
displacements (ul(t)yuz(f)) for free nonlinear vibrations. (c*) Power

spectrum for the system from time series of the first coordinate u, (t) —the

first mass particle displacement in the interval of time values between 0
and 10000, and time delay between points equal to 0.1.

Nonlinear forced vibrations of a two mass particle
chain system

Numerical analysis of the forced nonlinear system
vibrations is based on the following system of ordinary
nonlinear differential equations:

Vi =121

ml\./l =+ (uz —u1)+51 (U2 —Uu )3 —Cy (ul)
_EO (U] )3 + F()] COSQ]t

V) = 1/.{2 (40)

mz\./z =+C (—uz ) + 52 (_Mz )3 - (u2 _ul)

—51 (l/lz — U )3 +E)2 COSta

6
6
4 4
2 2
£
o 0 o 0
S 52
-4 -4
s -6
“0 T 20 40 60 80 100 0 20 40 60 80 100
Time, sec Time, sec
a* b*
6
4
2
IS
o 0
-2
-4
-6
0 500 1000

Time, sec
C*

Figure 11. Typical time history graph - evolution of the first mass particle
coordinate-mass particle displacement ”1(f) for forced nonlinear

vibrations for three no resonant cases. Forced frequency (a*) outside of the
resonant interval, (b*) and (c*) inside it.

Using the numerical results over the nonlinear system
oscillations, for both, resonant and non-resonant cases
series of the graphical presentations are given in Figures 11
and 12. As we can see, in the nonlinear case, double quasi-
periodicity with a moderate increase in amplitudes is
obtained as a response to the resonant frequency forcing.
Namely, the amplitudes are approximately quasi-
periodically increased and decreased.

Ul,cm
oA Nbownso

a* b*

Figure 12. Phase trajectory portrait of two-mass particle displacements
(i, (1)1, (¢)) for forced nonlinear vibrations and for no resonant cases.

Forced frequency (a*) outside of the resonant interval, and (b*) inside it.
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U, cm
S AN o N A~ o

1000 0 500 1000
Time, sec

of

500
Time, sec

e* *
Figure 13 . Typical time history graphs - evolution of the first mass
particle coordinate-mass particle displacement ul(t) for forced nonlinear

vibrations for three no resonant cases: (a*), (b*) and (c*) and three
resonant cases: (d*), (e*) and (f*).

In Fig.13 the typical time history graphs - evolution of
the first mass particle coordinate-mass particle
displacement ul(z) for forced nonlinear vibrations are

presented. For three no resonant cases frequencies of the
external excitation forces are: (a*) Q, =0,6427 and

Q,=14669z7, ¢¢= 0.01 [N/em’], &= 0.01, &= 0.01
[Nfem’];  (b*) © =06427 and @ =146697.Co= 1
[N/cm3], ci=1,¢r—=1 [N/cm3]; and (c*) Q, =0,6427 and
Q, =1,46697» €= 10 [N/em’], &,= 10, &,= 10 [N/em’]; and
three resonant cases: (d*) Q, =0,642 and Q, =1,4669, Co=
0.01 [N/em®], &,=0.01, &,=0.01 [N/em’]; (e*) Q,=0,642
and O =14669, ¢o= 1 [Nfem’], &= 1, &= 1 [N/em’];
and (f*) Q,=0,642 and Q, =1,4669, ¢o= 10 [N/cm3], c 1=
10, &,=10 [N/em®];

Concluding Remarks

New analytical and numerical results of the linear and
nonlinear dynamics of two degrees of freedom system
analysis are presented. For a mechanical chain system with
two degrees of freedom the oscillations in non-resonant as
well as in resonant case expressions of solution are derived.
Using the direct numerical experiment over the
corresponding system of differential equations a series of
graphical presentations are presented. The comparison
between linear and nonlinear system oscillatory, free and
forced dynamics give some conclusions. Also, the analysis
of the total mechanical energy of the system is analyzed.
Using Mihailo Petrovi¢’s theory of the mathematical
phenomenology elements, phenomenological mappings in
vibrations, signals, resonances and dynamical absorptions
in models of two degrees of freedom system dynamics —
the abstractions of different real system dynamics are
identified and presented by a Figure containing different
physical models of the dynamical systems. By using the
mathematical description of a chain mechanical system
with two mass particles coupled by linear elastic and
nonlinear elastic springs and two degrees of freedom
expressed by corresponding generalized independent

coordinates - translator displacements and corresponding
analysis of solutions for free and forced vibrations series of
corresponding two-frequency regimes and resonant states,
as well as dynamical absorption states, are identified. By
using these results and mathematical analogy and
phenomenological mappings it is possible to make the
corresponding analysis of the series of dynamics of other
two degrees of freedom models and their dynamics
(torsional system, double pendulum system, double
electrical circuit).
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Oscilatori: FenomenoloSko preslikavanje i analogije
— Prvi deo: Matematic¢ka analogija i lanci -

Predstavljeni su novi analiti¢ki i numericki rezultati o dinamici linearnih i nelinearnih sistema sa dva stepena slobode
kretanja. Za mehanicke lance izu¢avane su, analiti¢ki i numericki sa odgovaraju¢im poredjenjima svojstava izmedju
sopstvenih i prinudnih reZima, oscilatorne linearne i nelinearne dinamike u njima. Predstavljena je i energijska analiza
dinamika i transfer energije medju podsistemima. Koriste¢i teoriju Mihaila Petrovica ’’Elementi matematicke
fonomenologije”” i ’Fenomenolosko preslikavanje’’, u oscilacijama, signalima, fenomenima rezonancija i dinamickoj
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apsorbciji, u tim modelima, dinamicka apstrakcija razlifitih modela realnih sistema identifikovane su matematicka i
kvailitativne analogije. Matematic¢ki opis jednog mehanickog lanca sa dvema materijalnim tackama spregnutim
linearnoelasticnom ili nelinearno elasticnim oprugama i sa dva stepena slobode kretanja je prikazan zajedno sa
odgovarajucom alaizom Kineti¢kih parametara. Analizom odgovarajucih reSenja za sopstvene i prinudne dvofrekventne
reZime oscilacija i rezonantnih stanja, kao i stanja dinamicke apsorpcije doslo se do novih sazanja o interakciji modova u
nelinearnoj dinamici. Kori$éenjem matematicke analogije i fenomenoloskog preslikavanja svojstvenih fenomena
izu¢avanog mehanickog sistema, pokazano je da se ta saznanja mogu Koristiti za saznanja o fenomenima i svojstvima
dinamika drugih apstrakcija realnih sistema modelima sistema sa dva stepena slobode oscilovanja (napr. dvojnog klatna,
ili modela torzijskih oscilacija vratila sa dva diska, ili dvojnog elektri¢nog kola). I u najkra¢em, analiticki i numericki
rezultati linearnih i nelinearnih dinamika sistema sa dva stepena slobode su prikazani kao univerzalni, koji se mogu

preneti i na razlicite druge sisteme analogijama i preslikavanjima fenomena.

Kljucne reci: nelinearna dinamika, oscilacije, sopstvene oscilacije, prinudne oscilacije, oscilator.

Oscillateurs: application phénoménologique et analogies
— Premiére partie: analogie mathématique et chaines —

Les nouveaux résultats analytiques et numériques pour la dynamique des systémes linéaires et non linéaires a deux
degrés de liberté de mouvement sont présentés. Pour les chaines mécaniques on a étudié de facon analytique et
numérique avec les comparaisons correspondantes des propriétés entre les régimes libres et les régimes forcés leurs
oscillatoires dynamiques linéaires ainsi que celles non linéaires. On a présenté aussi ’analyse de I’énergie et le transfert
d’énergie parmi les sous-systémes. En utilisant la théorie de Mihailo Petrovic « Eléments de la phénoménologie
mathématique » et « Application phénoménologique » chez oscillateurs, signaux , phénoménes de résonance et
absorption dynamique dans ces modéles, I’abstraction dynamique des différents modéles chez les systémes réels on a
identifié les analogies mathématiques et qualitatives. La description mathématique d’une chaine mathématique a deux
points matériaux couplés par ressorts linéaires élastique ou non élastiques et a deux degrés de liberté de mouvement est
présentée avec I’analyse correspondante des paramétres cinétiques. Par ’analyse des solutions adéquates pour les
régimes des oscillations libres ou forcées a deux fréquences et des états de résonance ainsi que I’état de I’absorption
dynamique on a obtenu de nouvelles connaissances sur l’interaction des modes dans la dynamique non linéaire. Par
I’analogie mathématique et ’application phénoménologique des phénoménes du systéme étudié on a démontré que ces
connaissances peuvent s’utiliser pour d’autres abstractions des systémes réels par les modeles a deux degrés de liberté
d’oscillations (par exemple chez la pendule double ou chez le modéle des oscillations torses d’ensouple 2 deux disques ou
chez le double circuit électrique. En bref les résultats analytiques et numériques des syst¢émes dynamiques linéaires ou
non linéaires a deux degrés de liberté sont présentés comme universels pouvant se transférer sur d’autres systémes
différents a I’aide des analogies ou des applications des phénoménes.

Mots clés: dynamique non linéaire, oscillations, oscillations propres, oscillations forcées, oscillateurs.

OcumisaTopsi: GeHOMEHOJI0THYeCKOe 0TOOpaKeHne U AHAJIOT UM
- Yacrte [: MaTeMaTHUYeCKHE AHAJIOTHH U HENMOYKH —

31ech pexoMeHIyeMbl HOBbIe aHAIHTHYECKHE H YHC/IeHHbIe Pe3y/IbTAThI 110 AHHAMUKE JHHeHHBIX H HeJIHHEeHHbIX CHCTeM ¢
ABYMsI CTelleHsIMH cBOOOJABI JBH:KeHHs. /LIl MeXaHHYecKUX Heneill ObLIM HCC/IeN0BaHbI, AaHAIHTHYECKH M YHCJIEHHO €O
COOTBETCBEHHBIMU CPABHEHUSIMH MEKIY CBOICTBAMH CaMOCTOSATE/ILHBIX H NMPHHYAUTEJIbHBIX PEKHMOB, KoJe0aTelbHbIe
JIMHeiiHble U HeJIMHelHbIe AMHAMUKY B HHX. 3/lech NpecTaB/ieH U JHepreTHYecKHii aHAIN3 IHHAMHKY M NIepeHoC YJHeprul
Mexkay mnoacucreMamu. Memosb3ys Teopuro Muxaiina IlerpoBuya «JjieMeHThI MaTeMaTHdeckoil ¢eHoOMeHOI0TUH' U
""®deHOMEHOJIOTHYECKOe OTO0pakeHHe', B KoJe0aHHMSX, B CHrHAIAX, B SIBJEHUSIX pe30HAHCA W JHHAMHYECKOro
TIOTJIOIeHHsI, B 3THX MOJE/ISIX JMHAMHAYecKasi a0CTPaKus PasIH4YHbIX MoJeseil peaIbHBIX CHCTeM ObLIa BBISIBJIEHA KAK
MaTeMaTH4YecKasi M KadyeCcTBeHHasi aHajoruu. MaTemMaTHyeckoe ONMHCAHHE MEXaHHYECKOH LenmH ¢ JABYMsl NYHKTAMM U3
KOMIIO3UTHOT0 MaTepHaJa C JHHeiHO yNPYIUMH HJIH HeJIHHei{HO yNPYrHMH NPY:KHHAMH H C ABYMs CTeleHsIMH CBOOOIbI
JABHKEHHS MIOKA3aHO BMeCTe C COOTBETCTBYIOIIMM AHAIM30M KHHETHYECKHX MapaMeTPoOB. AHAIM30M COOTBETCTBYIOIIMX
pelueHuii 11 COOCTBEHHBIX H BbIHYKICHHBIX IBYXYACTOTHBIX PE:KMMOB K0/1€0aHUIl U PE30HAHCHBIX COCTOSHMM, 2 B TOM
Yypcde H COCTOSIHHSI JMHAMHYECKOI0 NOIVIONIEHHs, Mbl BBISICHWIH YTO HY/KHO 3HATH O PEKMMax B3aHMMOJeHCTBUSI B
HeJIHHeliHOH AuHamMuKe. C MOMOIIBLI0 MATeMATHYECKOH AHAIOHU H (eHOMEHOJIOTHYeCKOro 0TOOPaKeHUsl NMPHCYLIHX
sIBJICHHIi NpHJaraemMoii MexaHu4ecKoii cucTeMbl, 0bLI0 MOKA3aHO, YTO 3TH 3HAHHUS MOTYT ObITh HCNO/Ib30BAHBI /151 3HAHMIL
0 SIBJICHUSIX M CBOMCTBAX IMHAMMKH APYIMX a0CTPaKuMii peajibHbIX CHCTEM ¢ MOAEISIMH CHCTEM C ABYMS CTeleHsMH
cB00OAbI KOJIe0AHMI (HAMpuMep, MOJENH JBOWHOI0 MAsITHUKA WIM MOJEIH KPYTWIbHBIX KojefaHuii Baja ¢ JABYMs
JAMCKAMM, WJIH MOJleJIM ABOIiHOIi dJieKkTpryecKoii nenn). BkpaTie, aHaJinTH4ecKre M YHCICHHbIE Pe3y/IbTAThI JJHHEHHbIX H
HeJIMHEHHBIX JTHHAMHYECKUX CHCTEM C JBYMsI CTeNeHSIMH CBOOObI NMPEACTABICHBI KAK YHHBEPCAJIbHbIE, KOTOPbIe MOTYT
ObITH NepeJaHbl B pa3JIHYHbIe IPyrHe CHCTeMbl IIyTEéM aHAIOTHIi H 0TOOpaKeHuil siBJIeHHIA.

Kniouegvle cnosa: HeJqWHelHasi JAMHAMHKA, KoJe0aHUsl, COOCTBeHHbIe KoJe0aHUsl, BBIHYK/IAEHHbIe KoJe0aHusl,
OCIHIILTSITOP.





