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SOME REMARKS ON THE n-DIRECTABLE AUTOMATA
AND DEFINITE AUTOMATA: A SURVEY

Abstract: The concept of n-directable automata is a concomitant speciali-
zation concept of the directable automata and generalization of the concept definite
automata. The main purpose of this survey is to describe certain properties of -
directable and definite automata. These are mainly algebraic and structural pro-
perties, as well as the properties of their transition semigroups. Various speciali-
zations and generalizations of directable automata are an interesting field of
Automata theory. They have useful applications in industrial context and still
offer open questions. There are applications in the fields of many-valued logics,
biocomputing, set theory, etc.
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1. Introduction and basic concepts

Directable automata (or synchronizable, cofinal, reset automata) were
introduced in a paper by Cerny 1964 [3]. Many authors are investigated some of
their special types even several years earlier (definite automata were studied in
1956 by Kleene and in 1963 by Perles, Rabin and Shamir, nilpotent automata
were investigated in 1962 by Shevrin, etc). Reverse definite automata and lan-
guages were studies in 1963 by Brzozowski and in 1966 by Ginsburg. As a
common generalization of definite automata and reverse definite automata,
generalized definite automata were introduced in 1966 by Ginsburg, and they
were also suited in 1969 by Steinby.

Various other specializations and generalizations of the directable auto-
mata have appeared recently (in the paper by Petkovi¢, Ciri¢ and Bogdanovi¢,
Ciri¢, Imreh, Petkovi¢ and Steinby, Popovi¢, Bogdanovi¢, Petkovi¢ and Ciri¢,
Bogdanovi¢ M., [4,5,6,7] etc).

Now, we give the definitions of dirctable automata and its special types
(u-directable automata, k-definite, trap-u-directable and trapped automata, k-
nilpotent, n-directable).

The automata considered throughtout the paper are automata without
outputs, in the sense of the definition given by F. Gécseg and I. Peak in [9], and
we call them simply automata.Therefore, an automata is defined as a triple
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(A,X,8), where A and X are non-empty sets, not necessarily finite. A is called
the set of states and X is called the input alphabet, and §: A X X — A is the tran-
sition function of this automata. All automata that will be cinsidered in the
paper will have the same input alphabet X with |X| > 2.

The free monoid an the free semigrup over X are denoted by X* and X,
respectively. The length of a word u € X* denoted by |u|. For any k € N, the
subsets X%, X<k and X=* of X* are defined by X* = {u € X*||u| = k}, X<k =
{u € X*||lu| < k}and X=* = {u € X*||u| > k}.

Under the action of an input word u € X*, the automata A goes from a
state a into the state denoted by au.

An automata A is called u-directable for a given word u € X* if
au = bu, for all a,b € A. In that case the word u is called directing word of A.
Futhermore, for automata A is said to be directable if there exists a word u € X*
such taht A is u-directable. We may say that the directing word u directs the
states of the automata A into a single state that will be called a u-neck of 4 and
denoted by d,,. A state d € A is called a neck of A if there exists u € X such
thatr d is a u-neck of A.

Now, we will give two ways to specialize notation of a directable auto-
mata. First, for a given number k € N,, an automata A is called k-definite if
each word from X=¥ is a directing word of A. An automata A is said to be defi-
nite if there exists k € N, such that A is k-definite. The smallest number
k € N, for which A is k-definite is called the degree of definiteness of A. The
1-definite automata is called reset automata.

Furthemore, if u € X* such that A is u-directable and as a trap a,, then
a, is both the unique trap and the unique neck of A. In this case the word u
directs the states of A into to trap a, and the automata A is called trap- u-direc-
table, since the word u is called a trap-directing word of A. Similary, an auto-
mata A is said to be trap-directable if there exists a word u € X* such that 4 is
trap- u-directable.

We can give a common specialization of the notions of definite and
trapped automata. Namely, for a given number k € N, an automata A is called
k-nilpotent if each word from X=X is a trap-directing word of A. Equivalently, A
is called k-nilpotent if A is k-definite and has a trap. An automata A is said to
be nilpotent if there exists a number k € N, such that A is k-nilpotent. The
smallest number k € N, for which A is k-nilpotent is called the degree of nil-
potency of A.

In a similar way the notion of a trap-directable automata and a nilpotent
automata can be generalized. Namely, for a given word u € X* an automata is
called u-trapped if au € Tr(A), for all a € A. In this case the word u is called a
trapping word of A. An automata A is called a trapped automata if there exists
aword u € X™ such that A is u-trapped. Firthemore, an automata A is said to be
reverse k-definite if, for given number k € N,, every word from XK js a trap-
ping word of A. An automata A is said to be reverse definite if there exists
k € N, such that A is reverse k-definite.
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On this basis, it is obvious that, for some u € X*, an automata 4 is trap-
u-directable if and only if it is u-directable and u-trapped. As well, we have that
A is k-nilpotent if and only if it is k-definite and reverse k-definite, for k € N,.

Labeling of certain types of automata will be taken from the article [2]
of which were given many important characterization of the transition semigro-
ups of the automata.

Automata be referred the n-directable automata if for each input word
u € X*there is k € N so that there is u® € DW (A). Similarly, if for each input
word u € X* there is k € N so that uk € LDW(A),u* € GDW(A),u* €
TDW (A),u* € LTDW (A),u* € TW(A), then we call the automata A the
locally-n-directable automata, the general m-directable automata, the trap-m-
directable automata, the uniformly locally trap-w-directable and the m-trapped
automata, respectively [7].

2. The structure and transition semigroups

The main aim of this section is to describe the structure of the rn-directa-
ble automata and definite automata considered in Section 1. This will be done
using various decomposition and composition techniques. On the other hand,
we also characterize these automata through certain properties of their transition
semigroups.

The transition semigroup S(A) of an arbitrary automata A is defined as
the subsemigroup of the full transformation semigroup of the set of states of A
consisting of the mappings of the form u4, where u € X*.

Theorem 2.1. [4] The following conditions on automata A are equivalent:

i.  S(A) has a zero;

ii. A is a retractive extension of a discrete automata by a trap-
directable automata;

iii. A is a direct sum of trap-directable automata with same trap-
ping word;

iv. A is a subdirect product of a discrete and a trap-directable
automata;

v.  Aisauniformly trap-directable automata;

If A is a finite automata, then the condition iii. can be replaced by:
iii’. A is a direct sum of trap-directable automata.

Theorem 2.2. [4] The following conditions on automata A are equivalent:
i.  S(A) is a nilpotenet extension of right zero band;
ii. Ais adirect sum of definte automata with bounded degrees of
definiteness;
iii.  Aisauniformly locally definite automata;
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If A is a finite automata, then the condition ii. can be replaced by follo-
wing one:
ii’. Ais a direct sum of definite automata.

The automata A is called general z-directable automata if for each
word u € X*, there is k € N, so that u* is the general directing word, ie.
uk € G W(A) [1].

Lemma 2.3. [8] For an arbitrary automaton A, sets of TDW (A), LTDW
(A), TW (A), DW (A), LDW (A) and GDW (A) are the ideals of free monoids X*
and holds conditions:

(i) TDW (A) # @ = TDW (A) = LTW (4)

= TW (A) = DW (A) = LDW (A) = GDW (4);

(ii) LTDW (A) # @ = LTDW (A) = LDW (4)

= TW (A) = GDW (A);

(ii)) TW (A) # @ = TW (A) = GDW (A);

(iv) DW (A) # @ = DW (A) = LDW (A) = GDW (A);

(v) LDW (A) # @ = LDW(A) = GDW (A).

Theorems that follow provide a variety of characteristics of n-directable
automata.

Theorem 2.4. [8] For the automata A the following conditions are
equivalent:

(1) A is generally r-directable automata;

(2) A is an extension of local -directable automata using trap w-directa-
ble automata;

(3) S is a nil-extension of rectangular bands.

Proof: (1) - (2). Let the automata A is generally n-directable. Then, it
is the extension of the locally directable automata B using trap-directable auto-
mata C. As the automata B is locally directable, then LDW (4) # @, and based
on Lemma 2.3, we have LDW(B) = GDW (B). Thus, for every word u € X*
there is k € N such that u* € GDW (B) = LDW (B), and B is uniformly
locally n-directable automata.

On the other hand, since C is the trap directable automata, it is
TDW (A) # @, and by the

Lemma 2.3 it follows that TDW (C) = GDW (C). Therefore, for every
word u € X, there exists k € N, so that u®¥ € TDW (€) = GDW (C), and
the automata C is an trap directable automata.

This we have proved the implication (1) — (2).

(2) = (1). Let A is the extension of uniformly locally =-directable auto-

mata B using the trap m-directable automata C. Consider an arbitrary word
u € X*. Then exist k,I € N such that u* € LDW (B) and u! € TDW (C).
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Based on the feature of the sets of directing words, applies u**t = uku! €
GDW (A). Thus we have proved that A is the generally n-directable automata.

(1) - (3). Notice, an arbitrary word u € X*. Then there exists k € N
such that u* € GDW (4), which means that nj = 7, is an bi-zero in S(A).
Let E be the set of all-zero of S(A). Then we have that E is a rectangular bar and
the ideal of S(A), and how we proved that for every n, € S(A) there exists
k € N such that n¥ € E, this conclude that the S(A) is the nil-extensions of rec-
tangular bands E.

(3) = (1). Let S(A) is the nil-extensions of rectangular bands E. Consi-
der arbitrary word u € X*.By assumption, there exists k € N such that
nke E, ie. N,k € E. This means that ,« is the bi-zero of S(A), which implies
that the u* € GDW (A). Thus we have proved that A is the generally n-directa-
ble automata.

This is proof of the theorem is complete.

Let A is the mt-directable automata. Then, for each word u € X is there
n € N so that is u™ € DW (A). The smallest number n € N such that u™ €
DW (A), is the level of directing word u. Clearly, the directing words of the
automata A have the same level of guidance 1.

Following theorems are fully proven in [1].

Now we describe the uniformly locally trap-r-directable automata.

Theorem 2.5. [8] For the automata A the following conditions are equivalent:

(1) A is uniformly locally =-directable automata;

(2) A is the direct sum of n-directable automata, 4,, @ € Y and every
word u € X* has a limited level of guidance in automata A,, a € Y;

(3) S(A) is a nil-extension right zero bands.

Automata A is the n-trapped, if for each word u € X*, for which there
isk € N, hold uk € TW(4).

The next theorem describes, among other things, the structure of the
transition semigroup of the n-trapped automata.

Theorem 2.6. For the automata A the following conditions are equivalent:
1) A'is the n-trapped automata;

2) A is an extension of discrete automata with trap n-directable automata;
3)A is a nil-extension of left zero bands.

The following theorem gives a complete characterization of uniformly
locally trap w-directable automata.
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Theorem 2.7. For the automata A the following conditions are equivalent:

1) A'is uniformly locally trap w-directable automata;

2) A is the extension retractiveof the discrete automata with the trap
ndirectable automata;

3) A is the direct sum of trap m-directable automata, A,, @ € Y and
every word u € X* has a limited level of guidance in automata A,, @ € Y ;

4) A is the product subdirect of a discrete automata and a trap n-directa-
ble automata;

5) A is the parallel composition of a discrete automata, and a trap =-
directable automata;

6) S(A) is a nil-semigroup.

3. Correlation between w-directable automata and definite automata

In the case of finite automata is no difference between the n-directable
automata and the definite automata. The following theorem proves just that.

Theorem 3.1. [8] The finite automata A is a trap m-directable automata
if and only if it is nilpotent automata.

Proof: Let the automata A is the trap n-directable automata. This means
that there is a state a, € 4, so that for all a € A and for every word u € X*, for
which there is n € N such that u™ € DW(A), holds au = a,. The transition
semigroup S(A) of the automata A is a nil-semigroup. On the other hand, A is a
finite automata, so the transition semigroup S(A) is finite. Any finte nil-semi-
group is nilpotent, and then S(A) is nilpotent semigroup. The automata A is the
direct sum of the automata nilpotent A,, « € Y. However, A is the trap-directa-
ble automata, and it is the indecomposable of the direct sum. This means that
Y| =1,ie.Y ={a},and A = A,. So, A is the nilpotent automata.

The reversal of the theorem is clear.

The proof that a finite automata who is the n-directable, it is also defini-
te, given the following theorem.

Theorem 3.2. [8] The finite automata A is a n-directable automata if
and only if it is definite automata.

Proof: Let the automata A is the rm-directable automata. Then, A is a
locally n-directable automata and the transition semigroup of the automata A is
nil-extension of the right zero bands. However, as A is a finite automata, then
S(A) is finite semigroup, so it must be a nilpotent extension of right zero bands.
From this fact it follows that A is a direct sum of the automata definite, with the
same degree of definiteness. Furthermore, the automata A is indecomposable in
direct sum, because it is the n-directable, so it must be an automata definite.

The reversal of the theorem is clear.

We can prove that there is equivalence between generally n-directable
and general definite automata, as the uniformly locally n-directable and uni-
formly locally definite with analogous considerations [8].
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4, Conclusion

Automata are the prime examples of general computational systems
over discrete spaces and have a long history both in theory and application.

Directable automata, known also as synchronizable, cofinal and reset
automata, are a significant type of automata with very interesting algebraic pro-
perties and important applications in various branches of Computer Science.
The automata are viewed as systems that can be used for processing and tran-
smission of certain kinds of information. Sixties and later, there is a considera-
ble number of books on the Theory of Automata, which resulted in the develop-
ment of this area as one of the most important in the field of Computer Science.

Finite automata are important in science, mathematics, and engineering.
Engineers like them because they are superb models for circuits. Computer sci-
entists adore them because they adapt very nicely to algorithm design, for
example the lexical analysis portion of compiling and translation. Mathematici-
ans are intrigued by them too due to the fact that there are several nifty mathe-
matical characterizations of the sets they accept.
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Hou. n1p Munena bornanosuh

O HEKMM CBOJCTBUMA n-IUPEKTABUJIHUX
N AEOUHUTHUX AYTOMATA: ITPET'JIEJ

Caskerak: [lojam w-OupekmadbunHux aymomama npeocmasba ucmospeme-
HO cheyujanuzayujy nojma OupeKmaduinux aymoMama U 2eHepaiu3ayujy nojma
deunumuux aymomama. OcHogHa udeja 0802 pada je 0a ce onuuLy Heka ce0jcmed
T-OupexmaburHux aymomama u oegpunumuux aymomama. Ta ceojcmea ce ooHoce,
npe ceeea Ha HeKe uxose anzedbapcke u cmpyKkmypre ocobute, Kao u Ha ocobume
WUXOBUX nonyzpyna npenaza. Paznuuume cneyujanuzayuje u eenepanusayuje
OUPEeKMAdUIHUX AYMOMAmMa Npeocmasnbajy eeoma 3anumsugy obnacm Teopuje
aymomama. OHu uMajy paziudume npumeHe y UHOYCMPUju U MEXHOL02UjU U joul
yeex Hyoe MHo2a omeopena numarea. Hanase npumeny y uuiespeOHoCHUM N02UKA-
ma, buopauyHapcmay, meopuju cKynosea, umo.

Kibyune peuu: m-oupexmabuiHu aymomamu, OeQUHUMHU aymoMamu,
HUTINOMEHMHU AYMOMAMu, NOLyZpyne npeasd.

Ipumiseno: 17. 8. 2014. ronune.
OnoOpeno 3a mrammy: 12. 1. 2015. rouse.

90





