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APSTRAKT

Early studies on pancreatectomised dogs confi rmed the 

central role of the pancreas in the homeostasis of glycemia and 

resulted in the discovery of insulin. Today, hundreds of diff erent 

animal models are used in experimental studies of diabetes. Th e 

aim of this review is to present experimental models of type 1 

and type 2 diabetes. In preparing for this review, we searched the 

electronic databases Medline, Highwire, and Hinari. 
Th e majority of the experiments are conducted on rodent 

models (mice and rats). Selective inbreeding resulted in the devel-

opment of numerous models with pathogenic characteristics and 

the manifestation of type 1 and 2 diabetes and the related phe-

notypes of obesity and insulin resistance. In addition to analyzing 

the pathogenic mechanisms of the disease and its complications, 

these models are used to evaluate new treatment solutions as well 

as the transplantation of beta cells and disease prevention. New 

animal models have been created using techniques based in mo-

lecular biology and genetic engineering: transgenic, knockout and 

tissue-specifi c knockout models. Th ese are very powerful methods, 

which may lead to exciting results in the future.
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SAŽETAK

Prve studije rađene na psima kojima je prethodno uk-

lonjen pankreas potvrdile su centralnu ulogu pankreasa u 

homeostazi glikemije i doprineli otkriću insulina. Danas, 

veliki broj različitih eksperimentalnih modela se koristi u 

istraživanjima u oblasti dijabetesa. Cilj ovog revijskog rada 

je da predstavi neke od ovih modela, koristeći kao literatu-

ru originalne i revijske radove elektronskih baza Medline, 
Highwire i  Hinari.

Većina laboratorija koristi selektivnim inbridingom dobi-

jene miševe i pacove, kao i transgene i nokaut životinje dobi-

jene genetskim inženjeringom, koje zbog svojih karakteristika 

(npr. gojaznost, rezistencija na insulin) predstavljaju idealne 

eksperimentalne modele za dijabetes tip 1 ili 2. Ovi eksperi-

mentalni modeli koriste se kako za ispitivanje patogeneze 

dijabetesa tako i za ispitivanja novih terapijskih sredstava u 

lečenju šećerne bolesti. 

Ključne reči: animalni modeli, eksperimentalni dijabe-

tes, miš, pacov
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port (the role of glucokinase) and induces numerous le-

sions in the beta-cell DNA chain (3-5). It can selectively 

bind to glucose-transport protein 2 (GLUT2), which is 

predominantly expressed on the membranes of pancre-

atic beta-cells (3).

Toxicity of the streptozotocin on beta-cells is complex 

and includes genetic and non-genetic mechanisms (6). Ni-

tric oxide (NO) and other free radicals influenced by strep-

tozotocin result in spontaneous lesions of the DNA chain 

(7). Damaged DNA chains activate poly-(ADP-ribose) 

polymerase (PARP) as a reparatory mechanism, which in 

case of over-activation may have proapoptotic effects (8). 

PARP knockout mice were shown to be resistant for strep-

tozotocin-induced diabetes (8).

In addition, the toxicity of streptozotocin is associated 

with a drastic decrease of insulin reserves within beta cells, 

resulting from the fast catabolism of nicotinamide-ade-

nine-dinucleotide+ (NAD+), a substrate for PARP activa-

tion (9). Decrease of NAD+ and ATP+ provokes significant 

depletion of insulin secretion as well as other basic pro-

cesses inside the cell. While excessive activation of PARP 

represents a proapoptotic stimulus, the reduction of nec-

essary cell energy results in cellular necrotic death.

A single high dose of streptozotocin provokes diabetes 

in rodents, possibly as a result of the direct toxic effect. 

Multiple low-dose streptozotocin-induced diabetes (when 

streptozotocin is administered in lower doses (40 mg/kg) 

during five consecutive days) is an experimental model 

of type 1 diabetes and immune-mediated insulitis and is 

widely used for studying the immunological background 

of this disease (10).

Partial pancreatectomy

The partially pancreatectomised rat was one of the first 

experimental models of diabetes (11). The surgical removal 

of 90% of the pancreatic tissue resulted in a slow develop-

ment of hyperglycemia over the course of 12 weeks to 20 

months (12). The period of post-surgical euglycemia is fol-

lowed by the development of chronic hyperglycemia as a 

consequence of a further failure of the remaining beta cells.

The first stage of disease refers to glucose intolerance 

followed by a compensatory hyper-function of beta-cells, 

the exhaustion of the remaining beta cells and their further 

breakdown 14 weeks after surgery (12). Altered beta cell 

gene expression is associated with a decreased production 

of islet amylin polypeptide (IAPP), transcription factors, 

ionic canals and pumps, including GLUT2, glucokinase, 

mitochondrial glycerophosphate dehydrogenase (mGPD) 

and pyruvate carboxylase (13). A reduction of insulin se-

cretion follows even in conditions of high concentrations 

of glucose and even after application of insulin secret-

agogues (14).

Histopathological findings demonstrate hypertrophy 

and fibrosis of pancreatic islets related to the level of hy-

perglycemia (13). Insulitis, demonstrated as the infiltra-

tion of inflammatory cells, may be depressed, thus slowing 

down the process of cell degeneration (15).

INTRODUCTION

Since 1880, when von Mering and Minkowski removed 

the pancreas from a dog displaying symptoms of diabetes 

mellitus (1), many experiments have been conducted on 

mice, rats, rabbits, and dogs, which were all used as experi-

mental models for this disease.

The rodents (mice and rats) are most frequently used 

in laboratory research of type 1 and type 2 diabetes be-

cause they are biologically and genetically similar to peo-

ple, their reproductive potential is high, their life span 

is short, and they are cheap and easy to handle (1). The 

main drawback of these models is that sometimes they 

are unable to successfully simulate pathological processes 

occurring in humans; in those situations, the use of cats, 

dogs, pigs or primates is justifiable. 

Models of experimental diabetes are:

1. induced (experimental)

2. spontaneous (genetically induced) or

3. transgenic and knock-out models (resulting from ge-

netic engineering).

Hyperglycemia is induced by:

1. surgical method (partial or total pancreatectomy)

2. non-surgical method (using a diabetogenic toxin in ex-

perimental animals) (Table 1) (2).

MATERIALS AND METHODS

We searched the electronic databases Medline, High-

wire, and Hinari. Selected papers, both original and re-

view, have been summarized and cited with regard to their 

scientific relevance for this research field. 

EXPERIMENTAL MODELS OF

TYPE 1 DIABETES MELLITUS

A) Induced models

Multiple low-dose streptozotocin-induced diabetes

Streptozotocin (STZ) is a derivative of nitrosourea 

that has been isolated from Streptomyces achromogenes. 

It is a strong alkylating agent that affects glucose trans-

Toxin Diabetogenic effect

Streptozotocin Hyperglycemia, glucose intolerance

Alloxan Hyperglycemia, glucose intolerance

Chlorozotocin Hyperglycemia, glucose intolerance

Dithizone Hyperglycemia, glucose intolerance

Vacor Hyperglycemia

Oxine Hyperglycemia

Methylnitrosurea Glucose intolerance

Cyproheptadine Glucose intolerance

Table 1. Toxins with diabetogenic eff ect
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The disorder is autoimmune, and insulitis is characterized by 

the infiltration of T lymphocytes, B lymphocytes, macrophag-

es and NK cells (23). Typical for this species is extreme lym-

phopenia associated with a decreased number of T lympho-

cytes with an elevated expression of ADP-ribosyltransferase 2 

(ART2); this has not been registered in the human population 

(24). A transfusion of histocompatible T ART2+ lymphocytes 

prevents spontaneous hyperglycemia in this model (24).

Recent studies show that BB rat diabetic syndrome is a 

complex, polygenic disease that may share additional sus-

ceptibility genes aside from MHC class II with human type 

1 diabetes (25). The expression of two main susceptibil-

ity genes is responsible for the development of diabetes in 

the BB rat: MHC (RT1) class II u haplotype (Iddm1) and 

the Gimap5 (GTPase immunity associated protein family 

member 5) gene, a key genetic factor for lymphopenia in 

spontaneous BB rat diabetes (Iddm2) (25).

EXPERIMENTAL MODELS OF

TYPE 2 DIABETES 

A) Induced models

C57BL/6J mouse fed a high-fat diet

This model was originally introduced by Surwit et al. in 

1988 as a robust model of impaired glucose tolerance (IGT) 

and early type 2 diabetes (26). C57BL/6J mice fed a high-fat 

diet (58% energy by fat, a “Western diet”) developed hyper-

glycemia, hyperinsulinemia, hyperlipidemia and increased 

adiposity (27). High-fat diet results in insulin resistance with 

compensatory hyperinsulinemia. After one week on the diet, 

baseline plasma glucose and insulin are significantly elevated 

and intravenous glucose tolerance test (IVGTT) shows re-

duced glucose elimination and impaired insulin secretion 

(28). The model thus shows two important pathophysiologi-

cal characteristics for impaired glucose tolerance (IGT) and 

type 2 diabetes: insulin resistance and islet dysfunction. 

In this model, the weight gain is due primarily to an 

increase in mesenteric adiposity. In high-fat diet-fed mice, 

energy intake is higher and metabolic efficiency index is 

lower compared to normal diet-fed mice (28). Despite 

obesity, plasma leptin levels are significantly lower than in 

the control group in the absence of hyperphagia (29). In-

creased serum lipid levels develop concomitantly with the 

development of hyperglycemia, thus deteriorating insulin 

resistance and producing lipid deposits in non-adipose 

cells, including beta cells and skeletal muscle cells (30). 

Microscopically, a high-fat diet induces hypertrophy of 

pancreatic islets (31).

This model is suitable for examining novel therapeutic 

interventions. The dipeptidyl peptidase-IV (DPP-IV) in-

hibitor is efficient in improving glucose tolerance and insu-

lin secretion in the high-fat diet-fed mouse model (28). 

Partial pancreatectomy as a surgical method of in-

ducing diabetes was described above.

B) Spontaneous models

The most frequently used spontaneous models of type 

1 diabetes are the non-obese diabetic (NOD) mouse and 

the bio-breeding (BB) rat. These two strains are the result 

of laboratory inbreeding (keen cross-breeding) of a large 

number of generations; they develop the disease spontane-

ously, similar to type 1 human diabetes.

NOD mouse

The NOD mouse is an inbred, homozygous strain dis-

covered in 1974 in Shionogi Research Laboratories in Osaka, 

Japan. It was a result of keen cross-breeding from normogly-

cemic strains used for cataract research (Jcl-ICR mouse) and 

bred in sterile conditions, free from species-specific patho-

gens (16). The NOD mouse developed insulitis detectable by 

electronic microscopy after 2 weeks, and within 4-5 weeks it 

becomes visible under standard microscopy (17). The infiltra-

tion is mainly characterized by the presence of a large number 

of CD 4+ T lymphocytes, while CD 8+ T and B lymphocytes, 

as well as NK cells are not so numerous (18). Insulitis is pro-

gressive and accompanied by the destruction of beta cells and 

a decrease of insulin levels in serum. In contrast to the disease 

in the human population, these strains have mild ketoacido-

sis and can survive for weeks without insulin substitution (1). 

Incidence of this disease differs between genders (90% among 

females and 60% among males) (1). 

Similar to the human population, the main autoantigenes 

in pathogenesis of this disease, recognized by secreted anti-

bodies, are insulin, glutamic acid decarboxylase (GAD), and 

tyrosine phosphatase (ICA512, known as IA-2) (19). 

The genetic background of diabetes in this model highlights 

the role of a major histocompatibile complex (MHC) class II 

gene that codes for molecule I-Ag7 (20-21). The expression of 

MHC molecule class I refers to proteins Kd and Db (22). An al-

teration of INS gene expression, controlling the expression of 

insulin in the thymus and the deletion of T reactive lympho-

cytes in the case of central tolerance, is related to an initiation 

of the autoimmune process (22). A similar situation is observed 

with the cytotoxic T lymphocyte antigen 4 (CTLA-4) gene, 

which codes for a negative signal molecule for CD8+ T cells 

and controls the activation and expansion of T lymphocytes 

(22). The protein tyrosine phosphatase non-receptor type 22 

(PTPN22) gene, associated with autoimmune diabetes, codes 

for tyrosine phosphatase (LYP or PEP), a negative regulator 

of T cells (22). Variations of genes coding for IL2 and CD25 

FoxP3+ that a key role in maintaining immune homeostasis are 

common for both human and NOD mice (22).

BB rat 

The BB rat was discovered in 1974 within the commercial 

campaign of the Company Bio Breeding Laboratories, Ot-

tawa. It develops diabetes spontaneously (decrease of body 

weight, polyuria, polydipsia, hyperglycemia and insulopenia) 

during puberty—approximately the 12th week of life (1). Simi-

lar to the human population, the BB rat develops serious/fatal 

ketoacidosis unless insulin substitution is administered. (1) 
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B Spontaneous models

Goto Kakizaki Rat

The Goto Kakizaki (GK) rat is skinny, diabetic rat de-

veloped in Japan in 1975 from Wistar species (6). Both 

insulin resistance and impaired insulin secretion are pres-

ent in this model (32). GK rats have a decreased numbers 

of beta cells at birth, which is probably the consequence 

of their apoptosis during embryonic development (16-18 

day). However, GK rats are still normoglycemic and with-

out marked changes in islet morphology at birth (33). The 

characteristics of diabetes type 2 in this model are mild 

hyperglycemia (9 mmol/l) in the fourth week and the in-

crease of basal insulin secretion and insulin resistance fol-

lowed by a decrease in glucose tolerance (34). GK rats are 

resistant to food intake restrictions (35). 

Starting from the 8th week, insulin islets show signs of fi-

brosis with a marked elevation of hyperglycemia (36). In addi-

tion, the expression of CD38 and GLUT2 proteins is reduced 

in GK islets (37-38). Microscopically, numerous macrophages 

(major histocompatibility complex class II+ and CD68+) and 

granulocytes were found in and around pancreatic islets (39). 

Elevated islet IL-1β activity in GK rat promotes cytokine and 

chemokine expression, leading to the recruitment of innate 

immune cells (40). Treatment of GK rats with IL-1 receptor 

antagonists decreases hyperglycemia, reduces the proinsulin/

insulin ratio and improves insulin sensitivity (40). 

The most important factor for the disorder of insulin se-

cretion is the dysfunction of glucose metabolism connected 

with a deficiency of enzymes that control oxidative glycolysis 

(6). The GK rat develops some features that can be compared 

with the complications of diabetes seen in humans (1).

Zucker Fatty and Zucker Fatty Diabetic Rat 

The Zucker Fatty (ZF) rat has a defect of a gene that 

codes for leptin receptors (fa/fa), resulting in the develop-

ment of obesity and hypertension with associated renal 

and cardiovascular disease (6). The Zucker Fatty Diabetic 

Rat (ZDF) has the identical genetic mutation and, addi-

tionally, a mutation which leads to the spontaneous de-

velopment of hyperglycemia in males during the 7th-10th 

week (41). The females become hyperglycemic only after 

high-fat diet, and it is supposed that this additional muta-

tion is expressed in beta cells (42).

Leptin suppresses insulin secretion and controls food 

intake. The fa/fa mutation of the leptin receptor results in 

insulin resistance with severe glucose intolerance (6). ZF 

and ZDF rats are hyperphagic due to the reduction in lep-

tin signalling that results in obesity (6). These animals, in 

adulthood, become extremely dislipemic with increased 

concentration of free fatty acids, cholesterol, and triglycer-

ides in plasma with a consequent development of diabetes 

mellitus complications (cardiovascular, renal, and periph-

eral neuropathy) (6, 43-44).

Pancreatic islets in adults show increased beta cell ac-

tivity, with marked characteristics of a prediabetic state (6). 

After the onset of diabetes, pancreatic islets become irreg-

ular as a result of hyperplasia, hypertrophy and infiltration 

of inflammatory cells (45). An almost complete absence of 

beta cells was detected by the 14th week of age (45).

Reduced expression of mGDP and pyruvate carboxy-

lase activity was noticed in this model (46). 

Otsuka Long Evans Tokushima Fatty Rat

The Otsuka Long Evans Tokushima Fatty Rat (OLETF) 

is derived by inbreeding from the glucose-intolerant Long-

Evans colony of rats (47). These animals develop hypergly-

cemia slowly, by 40 weeks of age, with greater incidence in 

males than in females (1). Adult animals are mildly obese 

and hyperglycemic, with increased appetite and renal 

glomerulosclerosis. These changes are the result of a dele-

tion of the gene for cholecystokinin 1 receptors. Diet and 

exercise prevent type 2 diabetes in this model (48).

Histopathologic changes inside the islets during the 8th-

10th week show an infiltration of inflammatory cells followed 

by tissue damage. Beta cell hyperplasia and proliferation oc-

cur between the 20th and 40th weeks, while atrophy and fi-

brosis of the islets start after the 40th week (47). From the 

72nd week, inflammatory cytokines (tumour necrosis factor- 

(TNF- ), interleukin-1β (IL-1β) and interleukin-6 (IL-6)) are 

detectable by immunohistochemical method (49).

Psammomys obesus

The Psammomys obesus is rat from North America 

and the Middle East. It usually feeds on a low-calorie diet 

and demonstrates the strong effect of a high-calorie diet by 

developing hyperglycemia within 4-7 days (6).

Pathogenesis of the disorders goes through four typi-

cal stages: normoglycemia and normoinsulinemia, nor-

moglycemia with hyperinsulinemia (indicating insulin 

resistance), hyperglycemia with hyperinsulinemia, and hy-

perglycemia with hypoinsulinemia (50). The last stage is 

characterized by marked apoptosis and a reduction of beta 

cell mass (51). Returning to a low-calorie diet results in the 

recovery of beta cells, indicating that the irreversible loss of 

beta cell mass is a late event (52). 

TRANSGENIC AND KNOCKOUT MODELS

OF DIABETES MELLITUS

In experimental diabetes, numerous transgenic and 

knockout models are being used. These models have been 

created by genetic manipulations using either transgene 

insertion and/or targeted gene-deletion approaches. 

Still, these techniques have some limitations. Some 

homozygotes may die in the womb, which makes studies 

in adults impossible. Several genes could function dif-

ferently during embryogenesis and in adulthood. Finally, 

some models’ gene expression is altered in soft tissues, and 

therefore it is impossible to analyze their function in the 

desired tissue. Tissue-specific knockout models for diabe-

tes, in which the gene being studied is only knocked out in 

specific tissues, were created to address this issue.
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