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 
Abstract — In this paper we present a method for symbolic 

analysis of unreliable logic circuits in the presence of 
correlated and data-dependent gate failures, described by 
Markov chains. Furthermore, using this method we 
investigate the influence of data-dependent failures on the 
performance of majority logic and multiple input XOR gates. 

Keywords — Combinatorial circuits, fault-tolerance, 
Markov chains, symbolic analysis  

I. INTRODUCTION 

HE signal probability estimation in digital circuits 
captures the likelihood of a particular signal being 

equal to ‘0’ or ‘1’. The signal probability values indicate 
how difficult it is to control and test a signal [1]. The 
problem of signal probability estimation under reliable 
hardware is analyzed in detail in [2]-[4].  

Recently, probabilistic analysis has gained an increased 
significance in the analysis of unreliable hardware. 
According to a new design paradigm for very large scale 
integration technologies, a fully reliable operation is not 
guaranteed [5]. As the trend of constant decrease of 
transistors size continues, fault tolerance is recognized as 
one of the top challenges in semiconductor technology [6]. 
Increased noise sensitivity is a major drawback of new 
nano-scale technologies and it is one of the main reasons 
for so-called transient logic faults. These faults have 
probabilistic behavior and thus can be described 
statistically. 

Transient faults are usually modeled at logic gates level 
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and their statistics is given by the probability of an 
erroneous gate output. If the gate error probability is 
independent of gate inputs, the model is referred to as 
unconditional. Some methods for unconditional model 
analysis are presented in [7]-[11]. On the other hand, 
conditional faults modeling assumes that gate error 
probability depends on gates input values, as described in 
[1] and [12]. The state-of-the-art conditional error models 
analyze only current input values dependence. 

In this paper we present a more general fault model that 
captures the influence of current and previous gate input 
values on output error probability. Also, based on this 
error model, a novel symbolic method for faulty gate 
analysis is described and its application to particular logic 
gates such as XOR and majority logic is presented. 

The rest of the paper is organized as follows. In Section 
II the previous work related to this topic is presented, 
which includes the theoretical basis of the faulty gates 
analysis. In Section III, we present a novel description of 
faulty gates using Markov chain modeling and a novel 
symbolic method for gate analysis. Section IV presents the 
results of probabilistic analysis for some practically 
significant logic circuits. Finally, some concluding 
remarks and future research directions are given in Section 
V.  

II. PRIOR WORK 

The fundamentals of probabilistic logic circuits analysis 
are given in [2], where a so-called Parker-McCluskey 
method for exact signal probabilities calculation was 
proposed. Based on this method, signal probabilities at the 
outputs of logic circuit can be determined using individual 
gates calculation rules. The probability calculation rules 
for n-input elementary binary logic gates, with  inputs x1, 
x2,…,xn and output z, are given in Table 1, where p(s) 
denotes the probability that signal s is equal to 1. 

 
TABLE 1: SIGNAL PROBABILITY CALCULATION RULES FOR 

ELEMENTARY GATES WITH INDEPENDENT INPUTS 

Gate type Probability calculation rule 
NOT ( ) ( )p z p x  

AND 
1

( ) ( )
n

ii
p z p x


   

NAND 
1

( ) 1 ( )
n

ii
p z p x


   

OR 
1

( ) 1 (1 ( ))
n

ii
p z p x


    

NOR 
1

( ) 1 ( )
n

ii
p z p x


   

 
The Parker-McCluskey algorithm calculates the signal 
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probabilities at the output of every individual logic gate g 
in an m-input circuit C in terms of primary input signal 
probabilities of C. If the inputs of g are not independently 
controllable from the primary inputs of C, signal 
probability at the gate output cannot be determined using 
Table 1. Instead, the output signal probability p(z), can be 
expressed in terms of p(x1), p(x2), …, p(xm), where xi, 
1≤i≤m, represents the i-th primary input. The method 
states that if we first express pʹ(z), the probability of the 
gate output signal assuming input independence, p(z) can 
be derived by suppressing all exponents (p(xi))

j, j > 1, 
1 ≤ i ≤ m, in a given expression as follows 
 

 ( ) ( ),   1,1
( ) ( ) | .j

i ip x p x j i m
p z p z

   
  (1) 

Although the presented algorithm originally considered 
only perfect gates, it can easily be expanded for faulty gate 
analysis if gate failures are modeled as unconditional. 

The most common way for analyzing the faulty gates is 
the so-called mutant modeling approach. According to this 
approach every 2-input gate in a circuit is substituted with 
its faulty “mutant”, a gate with an equivalent Boolean 
function whose output is sometimes incorrect.  

The correct binary output value of a given gate, zc(k) at 
discrete time k, (k>0), depends on the gate binary input 
values, denoted by x1(k) and x2(k). This is illustrated in 
Fig. 1. Faults are inserted at the gate output by performing 
XOR operation between a correct gate output sequence 
{zc(k)}k>0, and an error sequence {e(k)}k>0, producing the 
actual output sequence {ze(k)}k>0. The error sequence 
{e(k)}k>0, represents the binary time series which describes 
the statistics of faults. If the k-th value of error pattern is 
‘1’, i.e. e(k) = 1 (k > 0), the output of a ‘mutant’ gate at 
time k will be faulty. 

Logic gate e(k)

x1(k)

x2(k)

zc(k)

ze(k)

 
Fig. 1. Faulty gate modelling using “mutant” approach. 

The assumption that the probability of faulty output p(e) 
is independent of gate’s input values corresponds to an 
unconditional error model. It is obvious that in this 
analysis an error pattern can be treated as a common 
primary input, with signal probability p(e). Thus, the 
Parker-McCluskey algorithm can be used for output signal 
probability calculation.  

There are also several other algorithms that use 
independent fault modeling, including Probabilistic 
Decision Diagrams (PDDs), Four-Event (FE)  
Trigonometric Probability Calculation (TPC), Reliability 
Analysis Logic Failures (RALF) algorithm and Boolean 
difference calculus.   

 The PDD algorithm uses directed acyclic graphs to 
describe the error probability of an individual gate [7]. 
When all gates PDDs are formed, they are recursively 
merged from inputs to outputs. The FE method describes 
signal behavior using four different states: 1, 0, e and eʹ, 
where e and eʹ represent an erroneous value and its 

negation, respectively [8]. Algorithm calculates the 
probability that a faulty value, originating from a 
particular gate g, will be observed at a circuit output. 
According to TCP approach, every signal distribution 
probability is represented as an angle and an error 

probability as its linear rotation [9]. By using 
trigonometric calculation, output probability is 
determined. RALF algorithm can be used for reliability 
calculation of a circuit given in the deterministic 
decomposable negation normal form [10]. Boolean 
difference calculus is used in [11] for modeling error 
propagation from circuits inputs to outputs. 

More realistic fault models take into account existing 
data-dependence of gate error probability and are referred 
to as conditional. The two well known representatives of 
this class of methods use Bayesian network [12] and 
Probabilistic Transfer Matrix (PTM) approach [1], 
respectively. In both methods, erroneous value appearance 
depends on the gate input values. However, both 
algorithms consider that only current input values 
influence the error occurrence. In the next section we 
present a more general modeling approach which depicts 
the influence of current and previous gate input values. 

III. SYMBOLIC ANALYSIS OF FAULTY LOGIC GATES 

A. Fault modeling using Markov chains 

In contrast to the state-of-the-art modeling of faulty 
gates that considers only the failure dependence on current 
input values, our model captures more accurately the 
correlation influence by using Markov chains.   

Consider a 2-input binary logic gate. In the model the 
error value at k-th time point e(k) is formed based on a pair 
of current and M-1 pairs of prior consecutive input values 
x1(k), x2(k), x1(k  1), x2(k  1)..., x1(k  M + 1), 
x2(k  M + 1)). Let S be a Markov source generating the 
error sequence composed of 22M states si, 1 ≤ i ≤ 22M, i.e. 

 21 2 2
, ,..., .MS s s s  Every state corresponds to one 

possible binary sequence of length 2M, 

 1 2 1 2 2... ... ,i M M M Ms b b b b b b   bjϵ{0,1}, 1 ≤ j ≤ 

2M, 1 ≤ i ≤ 22M, where the first M bits represent the 
consecutive values of input x1 and the second M bits 
represent the values of x2. Every state can capture the 
different data-dependent failures, expressed through 
different error probabilities Pe(si) = Pr{e(k) = 1 | si}, 
1 ≤ i ≤ 22M, k>0, where Pr{.} denotes probability.  

The relations between error probabilities in different 
states depend on a specific gate. For example, at the output 
of NAND logic gate a correct value ‘1’ appears only if 
both inputs are equal to ‘0’. Thus, if one input changes its 
value due to an increased noise level, the gate output will 
be faulty. Consequently, the all-zero state has the highest 
and the all-ones state has the lowest error probability. For 
any other state we form a simple model in which the 
number of ones in the state binary representation (the state 
weight) determines the error probability. The last 
conclusion can be formulated as follows 

    2
0( ) Pr 1 | Pr 1 | ,   1 2 ,M

e i i iP s e s A e s i        (2) 

where Ai represent the scaling coefficients, dependent on 
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state si. From the discussion presented above it holds 
  1 , 1,w i

iA p p   (3) 

where w(i) denotes the weight of state si. The parameter p 
enables us to change easily the values of scaling 
coefficients and model different fault conditions. A similar 
analysis can be performed for other elementary logic 
gates. 

B. A novel approach for faulty gate analysis  

We next present a novel symbolic algorithm for faulty 
gates analysis which combines the Parker-McCluskey 
algorithm with the data-dependent failure model given in 
the previous subsection. 

The probability that a signal value at the output of a 2-
input faulty logic gate is equal to ‘1’can be expressed as   

             

              
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1 1 2 2
1

2

1 1 2 2
1

1 1

      1 1 1 ,
M

N
M w i M w iw i w i

out e i
i

M w i M w iw i w i
e i

i N

P p p p p P s

p p p p P s

 



 

 

  

   




 (4) 

where p1 and p2 denote probabilities that a value ‘1’ 
appears at the gate inputs x1 and x2, respectively, while 
w1(i) and w2(i) represent, respectively, the weight of the 
first and second M bits in a binary representation of state 
si, 1 ≤ i ≤ 22M, and N denotes the number of states of 
Markov source S in which a correct output value is equal 
to ‘0’. 

The expression contains the exponents of input 
probabilities which appear as a consequence of the 
multiple discrete times analysis. It is obvious that 
suppressing them, as stated in the original Parker-
McCluskey algorithm, does not lead to a correct result. To 
distinguish exponents originated from different time points 
from exponents that appear because of signal space 
correlation, we present a variable substitution method. The 
variable pk (k = 1, 2) from Eq. 4 is substituted with M 
variables pk,n, 1 ≤ n ≤ M,  and we have 

             

              
2

2

1, 1, 2, 2,
1 1 1

22

1, 1, 2, 2,
1 1 1

1 1

      1 1 1 ,

i ii i

M

i ii i

M MN s j s js j s j
out j j j j e i

i j j M

M Ms j s js j s j
j j j j e i

i N j j M

P p p p p P s

p p p p P s

   

    

  

   

 

 

 (5) 

where        1≤ j≤2M, 1≤i≤ 22M, represents a complementary 
value of si(j).  

 

Fig. 2. Illustration of variables substitution method. 

If substitution is carried out for every input probability, 
through every signal path in an m-input circuit, all 
exponents in the expression for circuit output signals 
probabilities result from signals space correlation. The 

variable substitution is performed by parent-children 
principle – at every level of substitution a parent variable 
is substituted with M children variables, as illustrated in 
Fig. 2. Then the Parker-McCluskey method can be applied 
for suppressing exponents. At the end all variables are 
turned back into starting variables p1, p2, …, pm and the 
exact expressions for circuit output probabilities are 
derived. 

x1

x2

e1

e3

z

e2

x3

 
Fig. 3. 3-input test bench for symbolic algorithm 

validation. 

It can be noticed that error probabilities also propagate 
similarly as primary input probabilities. In order to analyze 
signal space correlation accurately, the error probabilities 
of every logic gate must be labeled differently and treated 
by the Parker-McCluskey method.  

The presented algorithm is validated using 3-input test 
bench shown in Fig. 3. The input denoted as x3 propagates 
through a reconvergent fanout creating two correlated 
signal paths. 

 

Fig. 4. Signal statistics at the output of test bench given by 
Fig. 3. 

Statistics of circuit output signal, p(z), for different 
values of input probabilities, P1=p(x1), P2=p(x2) and 
P3=p(x3) are presented in Fig. 4. It is assumed that every 
component gate failures are modeled using identical 
Markov chains. All results obtained using the presented 
method (denoted by (T)) are validated by Monte Carlo 
simulation results (denoted by (S)). Results obtained when 
all paths in the circuits are considered spatially 
uncorrelated and exponent suppressions are not performed, 
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are also presented in the figure (denoted by (F)). They do 
not adequately represent output signal probabilities and are 
especially inadequate in the region with low gate failure 
rates. 

x1

x2

e1

e2

z

 

Fig. 5. 2-input test bench for symbolic algorithm 
validation. 

It can be noticed that due to asymmetric paths in the 
circuit, the variables from different levels of substitution 
may appear in final expressions. A parent variable 
influences each children variable (originated from that 
parent) when multiplied with the children variable, needs 
to be suppressed. For example, the factor pi·pj·pi,1·pi,11 
reduces to pi·pj. 

To test this part of the substitution algorithm we use a 
simple 2-input test bench shown in Fig. 5. Output signal 
probabilities for different worst case failure rates of 
component NAND gates and different input signal 
statistics are presented in Fig. 6. Results obtained using a 
symbolic algorithm (denoted by (T)) match perfectly with 
the values obtained by Monte Carlo simulation (denoted 
by (S)). 

C. Complexity analysis 

We next present the complexity analysis in terms of the 
number of variables needed for symbolic calculation. The 
number of variables depends on the number of circuit 
inputs and length of paths that are affected by signal 
correlation. Let C be a logic circuit, with m inputs, k of 
which are spatially correlated (k<m). The set of correlated 
input signal can be denoted as Sk = {x1, x2, … xk}. The 
remaining m-k circuit inputs do not produce exponents in 
output probability expressions and there is no need to 
substitute their probability variables. 

Let Ni be the number of correlated signal paths with 
different lengths that involve the input xi, 1≤i≤k. Let ( ) ,j

iD  

1≤j≤Ni, 1≤i≤k, represents the length of the j-th correlated 
path in which the input xi is involved. Then, the total 
number of variables used can be expressed as follows 

 ( )

1 1

.
i j

i

Nk
D

tot
i j

N m k M
 

     (6) 

It can be noted that even for a small number M, the 
number of variables can be large if long correlation paths 
exist in a circuit. Symbolic calculation with a large number 
of variables can be time-consuming, which makes the 
presented algorithm impractical for the analysis of large 
logic circuits. 

IV. APPLICATION TO ML AND XOR CIRCUITS ANALYSIS 

We next present the results for m-input majority logic 
(ML) and XOR gates analysis built only from faulty 2-
input NAND logic gates. Faults are modeled by Markov 
chains and the probabilities of erroneous circuits outputs 

are calculated using the presented algorithm. 
All graphical results are obtained assuming that error 

occurrence at the output of faulty NAND gate depends on 
two consecutive input values, which corresponds to M = 2. 

 

Fig. 6. Signal statistics at the output of test bench given by 
Fig. 5. 

Also, for every m-input circuit the same statistics is 
assumed for every input and described by probability that 
input values xi, 1 ≤ i ≤ m, are equal to ‘1’, denoted as P1. 

 

Fig. 7. Probability of error at the output of 3-input ML 
logic gate. 

The output error probability of 3-input ML gate 
dependence of average component failures is presented in 
Fig. 7, for several values of parameter p (=1, 2, 3) and two 
input probabilities P1 = 0.5 and P1 = 0.9. A majority logic 
gate output is equal to ‘1’, if half or more inputs are equal 
to ‘1’. Thus, when ones and zeros appear at the gate inputs 
with equal probabilities (P1 = 0.5) more gate output values 
will be faulty, compared to a case when almost all inputs 
are ‘1’ (P1 = 0.9). When P1 = 0.5, the parameter p, which 
describes the presented Markov model, does not have any 
impact on the circuit performance, while the performances 
differ when P1 = 0.9. The performance comparison of ML 
gates with different number of inputs is presented in Fig. 
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8, when p = 2. It can be noted that the 2-input majority 
logic gate has the lowest output error probability when 
P1 = 0.5. However, when P1 = 0.9, the gate with the largest 
number of inputs (4-input gate) outperforms other logic 
gates. 

The data-dependence does not influence greatly the 
probability of error at the output of 3-input XOR gate, as 
illustrated in Fig. 9. This phenomenon is a consequence of 
the more symmetric circuit topology in which all error 
states are approximately equally likely. 

Performances of XOR gates with 3, 4 and 5 inputs are 
presented in Fig 10. It can be noted that increasing the 
number of inputs causes a higher output error probability. 
In an XOR logic circuit with more inputs, there are more 
gate failure combinations that may generate an output 
error. 

 

Fig. 8. Comparison of majority logic gates with different 
number of inputs for p=2. 

 

Fig. 9. Probability of error at the output of 3-input XOR 
logic gate. 

V. CONCLUSION 

In this paper we have presented a novel approach for 
transient faults modeling and analysis in combinatorial 
logic circuits. Using Markov chains, the error sequences at 
the output of a logic gate can be described in a more 
general way compared to the existing models.  

Our future research is directed to ensuring fault-
tolerance in digital networks, built from unreliable 
components. We are especially investigating memory 
architectures that use low density parity check error 
correcting codes. Presented algorithm can be used for the 
analysis of state-of-the-art memory architectures and under 
more realistic gate failure scenarios and designing novel 
architectures that are resistant to correlated data-dependent 
gate failures. 

 

Fig. 10. Comparison of XOR logic gates with different 
number of inputs. 
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