
Telfor Journal, Vol. 6, No. 1, 2014. 69

Abstract — The accuracy of parsing execution directly

affects the accuracy of semantic analysis, optimization and
object code generation. Therefore, parser testing represents
the basis of compiler testing. It should include tests for
correct and expected, but also for unexpected and invalid
cases. Techniques for testing the parser, as well as algorithms
and tools for test sentences generation, are discussed in this
paper. The methodology for initial testing of a newly
developed compiler is proposed. Generation of negative test
sentences by modifying the original language grammar is
described. Positive and negative test cases generated by
Grow, Purdom’s algorithm with and without length control,
CDRC-P algorithm and CDRC-P algorithm with length
control are applied to the testing of L-IRL robot
programming language. For this purpose two different tools
for generation of test sentences are used. Based on the
presented analysis of possible solutions, the appropriate
method can be chosen for testing the parser for smaller
grammars with many recursive rules.

Keywords — automated testing, grammar-based test
generator, parser testing, robot programming.

I. INTRODUCTION

HECKING the correctness of compiler execution
according to the given specifications is a complex

task. Compiler should have high reliability and therefore
its operations should be carefully verified. Creating an
effective set of tests includes an analysis of a large number
of combinations. In the context of compiler testing, a test
case consists of a test purpose or test case description, a
test input consisting of a source program for which the
behavior of the compiler is being verified and an expected
output which may include a reference to an output file or
error file [1]. Also, the testing must cover positive as well
as negative test cases [2]. The correctness of parsing

Paper received March 8, 2014; revised May 5, 2014; accepted May 6,
2014. Date of publication July 31, 2014. The associate editor
coordinating the review of this manuscript and approving it for
publication was Prof. Jovan Đorđević.

This paper is a revised and expanded version of the paper presented

at the 21th Telecommunications Forum TELFOR 2013.

This work was done under research projects that are supported by the

Ministry of Education and Science, Republic of Serbia TR32047 and
TR35023.

Maja Lutovac, School of Electrical Engineering, University of

Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia; Lola
Institute, Kneza Višeslava 70a, 11000 Belgrade, Serbia (e mail:
maja.lutovac@li.rs).

Dr Dragan Bojić, School of Electrical Engineering, University of
Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia (e mail:
bojic@etf.rs).

affects all other parts of the compiler: verification of
semantic constraints, optimizing transformations, and code
generation. Therefore, testing the parser provides a basis
for compiler testing.

Producing sentences from a grammar, according to
various coverage criteria or some other constraints, is
required in many applications, such as parser/-compiler
testing, natural language processing or grammar validation
[3].

In this paper techniques and tools for generating test
sentences that are used for automated parser testing are
discussed. The analysis of possible solutions is performed
and the methodology for testing the parser for smaller
grammars with many recursive rules is proposed. Using
this methodology, the parser of language for industrial
robot programming (Lola Industrial Robot Language - L-
IRL) [4], developed at the Lola Institute, is tested.

A technique for parser testing based on production
coverage criteria and a technique of generation of positive
and negative test sentences are described in Section II.
Section III gives a brief overview of algorithms for the
generation of test sentences: Grow algorithm, Purdom’s
algorithm, Purdom's algorithm with length control [5],
CDRC-P algorithm [6], CDRC-P algorithm with length
control [3] and the algorithm used in the Basil tool [7].
Tools for test sentences generation are described in
Section IV. The process of automated testing of L-IRL
parser using different algorithms and tools, and obtained
results are shown in Section V. Concluding remarks are
given in Section VI.

II. TECHNIQUES FOR PARSER TESTING

A. Grammar-based Testing Technique

Programming language syntax is specified by using
context-free grammar which also represents the basis for
the construction of the parser within the compiler. A
context-free grammar (CFG) is a set of recursive rewriting
rules (productions) used to generate patterns of strings.

The grammar-based methodology of testing parsers is
based on the use of production coverage as a measure of
parser test completeness. By using productions as
coverage metric, the process of grammar-based parser
testing reduces to identifying a target production, creating
a test string that will cause the target production to be
applied, and verifying that the target action handling code
was run in test. Once a means of running the action
handling code has been identified, coverage of the action
handler code must still meet target coverage levels [7].

Techniques for Automated Testing of Lola
Industrial Robot Language Parser

Maja M. Lutovac and Dragan Bojić

C

70 Telfor Journal, Vol. 6, No. 1, 2014.

B. Generation of Positive and Negative Tests for
Parsers

The main idea for the generation of positive and
negative tests for parsers is to modify (mutate) the original
grammar in order to obtain a language grammar that is
similar to the original one but not equivalent to it. These
mutant grammars are fed at the input of a test generator,
which then produces potentially negative tests [2].

A set of modifications (mutants) is obtained from the
component to be tested such that each mutant contains
exactly one error. A mutant is said to be killed if it
produces a result that differs from the result produced by
the initial component. Coverage criterion dictates that all
the mutants must be killed. In this case, the mutant
grammar will be killed if there is a sequence of tokens
belonging to the language specified by the mutant
grammar but not belonging to the original language. In
terms of parsers, this means that the mutant parser
recognizes the sentence and the original parser does not;
i.e., the mutant parser turned out to be killed. In the
following text the idea of obtaining negative tests for
testing parsers by using modified (mutate) sentences of a
target language, i.e. by replacing a segment of the sentence
with an incorrect one (which also includes an empty
segment), is described. First we will define set Ft which is
the set of tokens each of which can follow the token t. The
complement of the set Ft in the set of terminals T with an
empty sequence ε, will be marked as Rt.

tt FTR \}){(. (1)

Suppose α is a sentence in the language, and let the
token under the number i differ with respect to a given
language. A mutation of the first kind, which is denoted by
mut1(α, i), is defined as the replacement of the sentence
α=t1...tn by the set of sequences of tokens t1...tit'ti+1...tn,
where t’ is an incorrect token from the set Rti (t' ∈ Rti). A
mutation of the first kind assumes that incorrect tokens are
inserted in a sentence. A mutation of the second kind,
which is denoted by mut2(α, i) is defined as the
replacement of the sentence α=t1...tn by the set of
sequences of tokens of the form t1...tit'ti+2...tn, where token
t' ∈ Rti. A mutation of the second kind assumes that one of
the tokens is replaced by an incorrect token t'.

III. ALGORITHMS FOR GENERATING TEST SEQUENCES

A. Grow Algorithm

Grow algorithm can be used to generate test sentences
for parser testing within the Forson tool. In this algorithm,
different rules for each nonterminal symbol possess a
certain level of application probability. Associated text is
assigned to each symbol and it represents its name. For a
"literal", the associated text is simply its name. For a
"lexical", the associated text is a random string chosen in
the set of lexical values provided in the lexicon input file.
If no lexical value is found, its name (as it appears in
Bison's token definition) is used as a fallback alternative.
Every call of Grow algorithm produces a single
syntactically valid sentence of the target grammar. Extra
controls must be applied outside the Grow algorithm's
implementation in order to reiterate the generation until

the requested number of sentences has been generated.

B. Purdom’s Algorithm

Purdom’s algorithm is a fast algorithm that is useful for
parser testing and for debugging grammars [8]. Purdom
decomposes the problem of testing parsers in a fashion
similar to the grammar-based methodology of testing
parsers [7]. The first algorithm is used to find a mapping
from nonterminal symbols to strings of terminal symbols,
and the second algorithm is used to find a set of
derivations that cover all productions in a grammar.
Purdom's high level methods are geared toward the
verification of parser correctness. The purpose of the
algorithm is to generate a set of sentences and the parses
of the sentences, such that each production in the grammar
is used at least once [8]. The algorithm keeps the total
length of the sentences short, but generates them rapidly.
The algorithm proceeds in two distinct phases [3]. The
first phase statically collects necessary information from
the grammar and stores them in some tables. The
information includes: length of the shortest sentence that
can be derived from each nonterminal and each rule,
length of the shortest sentence which uses a nonterminal X
in its derivation, which rule to use to derive the shortest
sentence from a nonterminal X, which rule to use to
introduce a nonterminal X into the shortest derivation, and
so on. The second phase dynamically generates sentences
by utilizing the information collected in the first phase. A
table known as ONCE calculates the next rule to be used
for each nonterminal. The algorithm terminates when all
the grammar rules have been exploited.

C. The Extension of Purdom's Algorithm

Purdom's algorithm produces too few sentences and
some of them are long and complex, i.e., with complicated
derivation structures [3]. To avoid the shortcoming of
Purdom's algorithm, an improved algorithm is proposed in
[5]. It still accomplishes the rule coverage goal but
generates more and simpler sentences. The algorithm is
built upon Purdom's with two main extensions. First, a
reference length is used in the sentence generation process
as a reference to control the length of the generated
sentence. Second, the length of the shortest sentence
derivable from the current derivation is forecasted in the
sentence generation process. When choosing a rule to use,
it compares this shortest length with the reference length
and takes corresponding length control strategies.

D. CDRC-P Algorithm

 Modified Purdom's algorithm is proposed in [6]. It is
modified by changing table ONCE from calculating the
next rule to use for each nonterminal to calculating the
next rule to use for each direct occurrence of each
nonterminal. In the sentence generation process, it records
the context (occurrence) of each encountered nonterminal
and then consults table ONCE to choose the right rule to
rewrite that nonterminal. When all the rules for all the
occurrences in the grammar have been covered, the
generation process ceases. The sentences generated by this
algorithm are in general more complex than those of
Purdom's.

Lutovac and Bojić: Techniques for Automated Testing of Lola Industrial Robot Language Parser 71

E. The Extension of CDRC-P Algorithm

As a modified version of Purdom's algorithm, CDRC-P
preserves most of the features of Purdom's algorithm. It
generates relatively few sentences and some of them may
be rather long and complicated. Therefore the same length
control idea as in the extension of Purdom's algorithm is
proposed in [3]. In this way an extension of CDRC-P
algorithm generates more and simpler sentences achieving
context-dependent rule coverage.

F. The Algorithm used in the Basil Tool

The Basil tool uses the following two-step algorithm
[7]:

• Identification of a string in the set of terminals and
nonterminals that is guaranteed to exercise some
production in production set P.

• Walk of graph Gr (whose vertices represent terminals
and nonterminals and transitions are productions in a
production set P) starting at the identified string and
ending at a string of all terminal symbols.

The resulting string is added to the set of grammar-
based tests for grammar G. Generation of a string that
exercises some production in P, breadth first search (BFS)
algorithm of Gr (G) for a vertex entered by a target
production, for each production in P, is used. However, the
breadth first search of Gr (G) will commonly cover several
productions before a given target production is reached.
Redundant computation can be avoided by running a
modified breadth first search that searches for a set of
targets instead of a single target. Once a set of strings is
found, it remains to resolve these strings into strings of all
terminal symbols. One solution would be to iterate over
each string, performing some search in Gr (G) starting at
the string, and ending at the first vertex in Gr (G) that has
no out degree. This approach is inefficient because each
walk in Gr (G) could follow the same set of productions
for common nonterminals in the strings. A solution is to
implement a map of a set of nonterminals and to use it to
save the obtained path, so that the next time the same
nonterminal can be just replaced with a known result.

IV. TOOLS FOR TEST SEQUENCE GENERATION

A. Basil

Basil is a tool that enables parser testing by executing
grammar-based tests and generation of test strings by
using the algorithm described in Section II.A. To enable
those functionalities, the test string generator is integrated
into the Basil tool [7]. The Basil framework is a Python
based set of libraries and applications that are intended to
assist software developers in two ways. First, the
framework is meant to provide a common infrastructure
for programming language implementation. Second, the
framework should provide reusable components that allow
the development of cross language software engineering
and analysis tools.

B. Forson

Forson is a tool for the generation of syntactically
correct sentences on the basis of an input Bison grammar

file [9]. Any generic Bison grammar file is accepted as an
input file. Dynamic data structures are used to avoid
restricting the scope of the possible target grammars [10].
Forson contains two operating modes: random and
coverage. In the random operating mode, sentences are
generated by using the Grow algorithm. In the coverage
operating mode sentences are generated by using
Purdom’s algorithm. In both cases the sentence validity
does not exceed the syntactic level. There are no built-in
facilities to ensure the semantic conformance to the target
language. A partial support to the lexical aspect is instead
provided, as it is possible for the user to provide a .lexicon
input file containing a list of lexical values for the terminal
symbols of the target language. In the case of coverage
operating mode, a set of sentences is generated such that
all grammar rules are used. Minimality of this set often
occurs, but is not guaranteed. Forson works under the
Linux operating system. It is a batch program. It does not
provide (nor needs) an interactive user interface. It serially
opens its files, parses its input, elaborates its internal data
structure and starts the requested sentence generation. No
intermediate temporary files are involved, because the two
generation algorithms (Grow and Purdom), ultimately emit
the terminal symbols of the target language directly to the
output stream.

C. DGL (Data Generation Language)

DGL (data generation language) is a language for
automatically generating test data. DGL is based on the
concept of probabilistic context-free grammars and allows
data to be generated either systematically or randomly, or
some combination of the two [11]. The most extensive
application of this tool has been in the area of design-
verification of VLSI circuits. Although VLSI design
verification appears to have very little in common with
software testing, such verification is usually done using a
software simulation of the circuit rather than the circuit
itself. Because of this the differences between software
testing and VLSI design verification have all but
disappeared.

D. Toolkit for Generating Sentences from Context-Free
Grammars

Another toolkit for generating test sentences is proposed
in [3]. This toolkit supports sentence generation with
coverage criteria, sentence enumeration and sentence
analysis. The toolkit deals with general context-free
grammars, which have no restrictions on grammars. It
consists of several algorithms for sentence generation or
enumeration and for coverage analysis for context-free
grammars. The sentence generation algorithms provided in
the toolkit are based on grammar coverage criteria,
including rule coverage (RC) and context-dependent rule
coverage (CDRC). For each coverage criterion, two
algorithms are implemented, one with a sentence length
control mechanism and the other without it. Besides
providing implementations of algorithms, it also provides
a simple graphical user interface, through which the user
can use the toolkit directly.

72 Telfor Journal, Vol. 6, No. 1, 2014.

V. L-IRL (LOLA INDUSTRIAL ROBOT LANGUAGE) PARSER

TESTING

A. L-IRL (Lola Industrial Robot Language)

L-IRL (Lola Industrial Robot Language) is a language
for programming and the control of cooperative work of
multiple robots, developed at the Lola Institute in Belgrade
[4] [12]. L-IRL belongs to the class of problem-oriented
languages and contains instructions for programming of
robot motions and instructions for programming the logic
flow of the program. It enables operations with logical and
geometrical expressions as well as operations with
environmental signals. It is characterized by structuring
and modularity. L-IRL is based on PASCAL programming
language with certain modifications. The proposal of the
German standard for robotic languages - IRL (DIN 66312)
is used as a role model in the realization of modularity and
robot-specific program constructions.

B. L-IRL Parser Testing

Testing of L-IRL parser is performed based on test
sentences generated by using the Forson tool (using Grow
algorithm and Purdom’s algorithm) and the tool presented
in [3] (using Purdom’s algorithm with length control,
CDRC-P algorithm and CDRC-P algorithm with length
control). It is performed for the correct language grammar,
as well as for intentionally modified (mutated) language
grammar.

In the case when the Forson tool is used for sentences
generation, the file with Bison grammar of the L-IRL
language is used as the input file. The list with lexical
values connected with the tokens of the target language, in
a form of l-irl.lexicon file, is used during the testing.

The following text provides an example of a test
sentence which is obtained by using Purdom’s algorithm,
i.e. the coverage operating mode within the Forson tool.
Besides the standard instructions for programming the
logic flow of the program, the test sentence contains
specific L-IRL instructions such as: wait instructions
(which stop the program execution until a certain
condition becomes true), pause (which stops the program
execution for a specified number of seconds) and move

instructions that provide programming of industrial robot’s
motions with additional parameters. Seq and endseq block
marks the sequential execution of the instructions.

 program p3;
 procedure q3 ()
 seq
 if 1 then
 case 2 of when 3 :
 for p2 := 1 to 3 step 1
 wait for 2 timeout 2 sec;
 endfor
 default:
 wait for 1 ;
 endcase
 endif;
 pause 3;
 endseq
endproc
 seq
 return 1;
 move lin 2 act_rob := 3;
 endseq
endprogram;

An example of test sentence obtained by using random
operating mode, i.e. Grow algorithm is given in the
following text. The test sentence contains the definition of
complex data type that consists of joint data type (the
data type that describes the position of industrial robot in
internal coordinates).

program q3 ;
 type
 record
 joint [3] : p2, q2, q2, p1, p3, p3, q2;
 endrecord = mainjoint;
 endtype;
endprogram;

Full coverage is achieved by using Purdom’s algorithm.
In the case of the application of Grow algorithm to a
grammar which has many recursive rules, as is the case
with L-IRL grammar, an infinite generation may occur.
Forson assigns the same frequency of choice to all the
rules of a nonterminal symbol. The only way to try to
avoid this behavior is to place extra copies of non-
recursive rules in the Bison grammar input file, but this is
not an elegant solution [10].

In the case when we used the tool described in [3] for
test sentences generation, the input file is the context-free
grammar. Once a grammar is input, the editor will check
whether it is well-defined. By default, the start symbol
corresponds to the left-hand side of the first rule. After
generation, the number of generated sentences, the
information on sentences lengths, and the total time for
generating sentences are also counted. This tool does not
contain support to the lexical aspect.

The following text provides an example of a test
sentence which is obtained by using Purdom's algorithm
with length control. The test sentence contains robot
specific data types (joint and addjoint) that describe
robot positions in internal coordinates.

PROGRAM IDENTIFIER ' ; '

VAR
RECORD

ADDJOINT LEFT_ARR_BR RIGHT_ARR_BR IDENTIFIER '
; '
ENDRECORD IDENTIFIER ' ; '
JOINT IDENTIFIER ' ; '

ENDVAR
SEQ ENDSEQ

ENDPROGRAM ' ; '

An example of test sentence obtained by using CDRC-P
algorithm is given in the following text.

PROGRAM IDENTIFIER ' ; '

VAR
TYPE_REAL IDENTIFIER ASSIGNEMENT NUMBER_INT ' * '
NUMBER_INT ' ; '

ENDVAR
ENDPROGRAM ' ; '

The following text gives an example of test sentence

obtained by using CDRC-P algorithm with length control.
L-IRL specific instruction INV is used to calculate an
inverse value of robot specific data type of POSE that
describes robot position in external coordinates.

PROGRAM IDENTIFIER ' ; '

SEQ
PAUSE INV ' (' STRING_VAL ') ' ' ; ' ENDSEQ

ENDPROGRAM ' ; '

Lutovac and Bojić: Techniques for Automated Testing of Lola Industrial Robot Language Parser 73

Quantitative data on the L-IRL language grammar
(number of shifts and tokens) as well as information on the
applied mutations are shown in Table 1. Table 1 also
shows information about generated positive and negative
tests for Purdom’s and Grow algorithm, using the Forson
tool and positive and negative tests for Purdom's algorithm
with length control, CDRC-P algorithm and CDRC-P
algorithm with length control (using the tool presented in
[3]). The tool presented in [3] can also be used for
obtaining the data such as sentences number, total length,
average length, maximal length or minimal length.

TABLE 1: QUANTITATIVE DATA ON THE L-IRL GRAMMAR AND

PARSER TESTING
Shifts in the grammar 83
Grammar tokens 110
Applied mutations 5
Number of positive tests generated by Purdom
algorithm

15

Number of positive tests generated by Grow
algorithm

10

Number of negative tests generated by
Purdom algorithm

15

Number of negative tests generated by Grow
algorithm

10

Number of positive tests generated by RC
with length control

69

Number of positive tests generated by CDRC 794
Number of negative tests generated by RC
with length control

71

Number of negative tests generated by CDRC 1042
Maximal length using RC with length control
for original L-IRL grammar

94

Maximal length using RC with length control
for mutated L-IRL grammar

86

Maximal length using CDRC for original L-
IRL grammar

3113

Maximal length using CDRC with length
control for original L-IRL grammar

106

Maximal length using CDRC for mutated L-
IRL grammar

3116

Maximal length using CDRC with length
control for mutated L-IRL grammar

109

Semantic coverage in Forson tool No (partial
support to the
lexical aspect
is provided)

Semantic coverage in tool presented in [3] No

C. Negative Test Sentences

Generation of negative test sentences is performed by
using Grow, Purdom’s, Purdom’s with length control and
CDRC-P and CDRC-P with length control algorithm. The
grammar is intentionally "corrupt" (mutated) in order to
generate syntactically incorrect sentences. Negative test
sentences are obtained using simple mutations, since
according to [13]: if simple mutations are detected, then
the complex mutations will be also detected.

L-IRL grammar is mutated using the next five
mutations: in the rule for defining constants the symbol ‘:’
is inserted behind the terminal symbol CONST; in the rule
for defining functions the terminal symbol IDENTIFIER is
duplicated; in the rule for defining the var part of the

program the symbol ‘;’ is inserted behind the terminal
symbol VAR; in the rule for defining new types the
symbol ‘=’ is replaced with symbol ‘<>’. In the rule for
stop statement the terminal symbol PAUSE is replaced
with terminal symbol PAUSE2. The first, second and third
mutations are mutations of the second kind. The fourth and
the fifth mutations represent mutations of the second kind.
Those mutated grammar rules are given in the next text.

CONST ':' constant_definition_list ENDCONST ';'
variable_definition_part : VAR ";"

definition_list ENDVAR ';'
function_definition : FUNCTION IDENTIFIER

IDENTIFIER function_block ENDFCT ';'
type_definition : type '<''>' type_identifier
PAUSE2 [expression] ';'

A potentially negative test sentence that includes the
third mutated grammar rule, obtained by using Forson tool
and Purdom’s algorithm, is given in the following text.
The test sentence contains move and move_inc instructions
that describe industrial robot movement (circle, ptp – point
to point or lin - linear) with additional parameters. Those
two instructions specify the coordinate system in which
the motion is programmed. It can be the user coordinate
system (move instruction) and the tool coordinate system
(move_inc instruction).

program p1 ;
function q2 p2 () : real

seq
move circle 1, 2 c_cp;
move_inc ptp 3 c_ptp;

endseq
endfct
seq

move_inc lin 3 c_cp := 2;
endseq

endprogram ;

A potentially negative test sentence obtained by using
the Forson tool, Grow algorithm and the first mutated
grammar rule, is given in the following text.

program p3 ;
const : event : q3 := true; endconst

endprogram;

The following text provides two examples of negative
test sentences obtained by using the tool proposed in [3]
and Purdom's algorithm with length control. The first
example includes the second mutated grammar rule. The
second example includes the fourth mutated grammar rule.

PROGRAM IDENTIFIER ' ; '

VAR ' ; '
STRING IDENTIFIER ASSIGNEMENT NUMBER_REAL ' , '
IDENTIFIER ASSIGNEMENT PI ' , ' IDENTIFIER ' ; '

ENDVAR
PROCEDURE IDENTIFIER ' (' ') '
ENDPROC
SEQ ENDSEQ

ENDPROGRAM
PROGRAM IDENTIFIER ' ; '

TYPE
RECORD TYPE_INT IDENTIFIER ' , ' IDENTIFIER ' ; '
ENDRECORD ' < ' ' > ' TYPE_BOOL ' ; '

ENDTYPE ' ; '
VAR ' ; '

OUTPUT IDENTIFIER AT NUMBER_INT
ENDVAR

ENDPROGRAM

Examples of negative test sentences obtained by using
CDRC-P algorithm with length control are given in the

74 Telfor Journal, Vol. 6, No. 1, 2014.

following text. The first example includes the second
mutated grammar rule and the second example includes
the fifth mutated grammar rule.

PROGRAM IDENTIFIER ' ; '

VAR ' ; '
BOUNDS LEFT_ARR_BR STRING_VAL RIGHT_ARR_BR
IDENTIFIER ASSIGNEMENT NUMBER_INT ' ; '

 ENDVAR
FUNCTION IDENTIFIER IDENTIFIER ' (' ') ' ' : '

IDENTIFIER
PAR ENDPAR

ENDFCT
ENDPROGRAM

 PROGRAM IDENTIFIER ' ; '

SEQ PAUSE2 IDENTIFIER ' ; ' ENDSEQ
ENDPROGRAM

D. Checking the Obtained Results

Test sentences (positive and negative) which are
obtained by using Purdom’s algorithm, Grow algorithm,
Purdom's algorithm with length control, CDRC-P
algorithm and CDRC-P algorithm with length control are
compiled by using L-IRL IDE (robot programming
environment) and the obtained results are compared to the
expected results. The result of compilation for all positive
test sentences, obtained by using the Forson tool and the
tool proposed in [3] was successful parsing without error
notifications. For potentially negative test examples,
obtained by using the Forson tool, the compiler has
reported the expected syntax errors. For the sentences
which are obtained by mutating grammar rules the
compiler reported an error: Syntax error at line X,
where X was the number of the line in which the error was
expected. Compiling of negative test examples was also
performed for the sentences obtained by using the tool
proposed in [3]. Previously, the token values had to be
replaced with the possible lexical values. As the result of
compiling those test examples, an expected syntax error
was reported.

VI. CONCLUSION

This paper presents a systematic approach to language
parser testing, based on available techniques. Using these
techniques and tools the parser of language for industrial
robot programming is tested. The testing is performed
based on positive and negative test examples. For the
testing, several algorithms are used: Purdom’s and Grow
algorithm as a part of Forson tool and Purdom’s algorithm
with length control, CDRC-P algorithm and CDRC-P
algorithm with length control. Grow algorithm was not
adequate for testing the L-IRL parser because it doesn’t
have facilities for limiting the size of a randomly
generated sentence. When using this algorithm for the
testing of grammar that has many recursive rules an
infinite generation may occur. Testing the L-IRL parser
using Purdom’s algorithm enables complete coverage of
all grammar rules. This algorithm may be applied for
testing parsers of both large and small programming
languages, but it is only complete in the case of a parser
for smaller grammars such is L-IRL grammar. The Forson
tool is applied for testing with those two algorithms. For

the testing by using Purdom’s algorithm with length
control, CDRC-P algorithm and CRDC-P algorithm with
length control the tool proposed in [3] is used. Unlike the
Forson tool that is a batch program this tool provides a
graphical user interface. Besides the functionality of
sentence generation, it provides sentence enumeration and
analysis, and quantitative data for used grammars, such as
sentences number, total length, average length, maximal
length or minimal length. An extension of Purdom’s
algorithm implemented within this tool accomplishes the
rule coverage goal but generates more and simpler
sentences than the Purdom’s algorithm. CDRC-P
algorithm with length control produces more and simpler
sentences, achieving context-dependent rule coverage,
than the extension of the Purdom’s algorithm. Both used
tools do not provide semantic coverage of the target
language. The advantage of the Forson tool is that it has
partial support to the lexical aspect, but in both cases there
is a need for manual adjustment of tests sentences.
Therefore we propose using shorter test cases.

The paper provides an overview of the techniques and
methods used in practice, and, after an analysis of possible
solutions, proposes a methodology for initial testing of a
newly developed compiler. Based on the presented
analysis, the appropriate method can be chosen for testing
the parser for smaller grammars with many recursive rules.

REFERENCES
[1] A. S. Boujarwah, K. Saleh “Compiler Test Case Generation

Methods: a Survey and Assessment,“ Information and Software
Technology, Vol. 39, 1997, pp. 617–625.

[2] S. V. Zelenov, S. A. Zelenova, „Generation of Positive and
Negative Tests for Parsers“, Programming and Computer Software,
2005, Vol. 31, No. 6, pp. 310-320.

[3] Z. Xu; L. Zheng; H. Chen, „A Toolkit for Generating Sentences
from Context-Free Grammars,“ 8th IEEE International Conference
on Software Engineering and Formal Methods (SEFM), 13-18 Sept.
2010, pp.118-122.

[4] M. Pavlović, “High Level Programming Language for mult‐robotic
operations,” (in Serbian), M. Sc thesis, University of Belgrade,
Scholl of Electrical Engineering, 1994.

[5] L. Zheng, D. Wu, “A sentence generation algorithm for testing
grammars,” Proc. of the 33rd Annual International Computer
Software and Applications Conference, Vol. 1, 2009, pp. 130-135.

[6] Y. Shen, H. Chen, “Sentence generation based on context-
dependent rule coverage,” Computer Engineering and Applications,
Vol. 41, No. 17, 2005, pp. 96-100.

[7] J. Riehl, „Grammar Based Unit Testing for Parsers,“ M.Sc.Thesis,
Department of Computer Science, University of Chicago, 2004.

[8] P. Purdom, „A sentence generator for testing parser,“ BIT
Numerical Mathematics, Vol. 12, 1972, pp. 366-375.

[9] Bison - GNU parser generator, Available:
www.gnu.org/software/bison/, June 2013.

[10] Forson, a sentence generation tool, Available:
http://forson.sourceforge.net/, June 2013.

[11] P. Maurer, „The Design and Implementation of a Grammar-based
Data Generator,“ Software Practice and Experience, Vol. 22, pp.
223–244, Marc. 1992.

[12] M. Lutovac, G. Ferenc, V. Kvrgić, J. Vidaković, Z. Dimić, „Robot
programming system based on L‐IRL programming language,“
Acta Technica Corviniensis – Bulletin of Engineering, Fascicule 2.
April–June, pp. 27-30, 2012.

[13] A. J. Offut, R. H. Untch, “Mutation 2000: Uniting the Orthogonal,”
Mutation Testing in the Twentieth and the Twenty First Centuries,
San Jose, Calif., 2000, pp. 45–55.

