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Abstract — The accuracy of parsing execution directly 

affects the accuracy of semantic analysis, optimization and 
object code generation. Therefore, parser testing represents 
the basis of compiler testing. It should include tests for 
correct and expected, but also for unexpected and invalid 
cases. Techniques for testing the parser, as well as algorithms 
and tools for test sentences generation, are discussed in this 
paper. The methodology for initial testing of a newly 
developed compiler is proposed. Generation of negative test 
sentences by modifying the original language grammar is 
described. Positive and negative test cases generated by 
Grow, Purdom’s algorithm with and without length control, 
CDRC-P algorithm and CDRC-P algorithm with length 
control are applied to the testing of L-IRL robot 
programming language. For this purpose two different tools 
for generation of test sentences are used. Based on the 
presented analysis of possible solutions, the appropriate 
method can be chosen for testing the parser for smaller 
grammars with many recursive rules. 

Keywords — automated testing, grammar-based test 
generator, parser testing, robot programming. 

I. INTRODUCTION 

HECKING the correctness of compiler execution 
according to the given specifications is a complex 

task. Compiler should have high reliability and therefore 
its operations should be carefully verified. Creating an 
effective set of tests includes an analysis of a large number 
of combinations. In the context of compiler testing, a test 
case consists of a test purpose or test case description, a 
test input consisting of a source program for which the 
behavior of the compiler is being verified and an expected 
output which may include a reference to an output file or 
error file [1]. Also, the testing must cover positive as well 
as negative test cases [2]. The correctness of parsing 
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affects all other parts of the compiler: verification of 
semantic constraints, optimizing transformations, and code 
generation. Therefore, testing the parser provides a basis 
for compiler testing. 

Producing sentences from a grammar, according to 
various coverage criteria or some other constraints, is 
required in many applications, such as parser/-compiler 
testing, natural language processing or grammar validation 
[3]. 

In this paper techniques and tools for generating test 
sentences that are used for automated parser testing are 
discussed. The analysis of possible solutions is performed 
and the methodology for testing the parser for smaller 
grammars with many recursive rules is proposed. Using 
this methodology, the parser of language for industrial 
robot programming (Lola Industrial Robot Language - L-
IRL) [4], developed at the Lola Institute, is tested.  

A technique for parser testing based on production 
coverage criteria and a technique of generation of positive 
and negative test sentences are described in Section II. 
Section III gives a brief overview of algorithms for the 
generation of test sentences: Grow algorithm, Purdom’s 
algorithm, Purdom's algorithm with length control [5], 
CDRC-P algorithm [6], CDRC-P algorithm with length 
control [3] and the algorithm used in the Basil tool [7]. 
Tools for test sentences generation are described in 
Section IV. The process of automated testing of L-IRL 
parser using different algorithms and tools, and obtained 
results are shown in Section V. Concluding remarks are 
given in Section VI. 

II. TECHNIQUES FOR PARSER TESTING 

A. Grammar-based Testing Technique 

Programming language syntax is specified by using 
context-free grammar which also represents the basis for 
the construction of the parser within the compiler. A 
context-free grammar (CFG) is a set of recursive rewriting 
rules (productions) used to generate patterns of strings. 

The grammar-based methodology of testing parsers is 
based on the use of production coverage as a measure of 
parser test completeness. By using productions as 
coverage metric, the process of grammar-based parser 
testing reduces to identifying a target production, creating 
a test string that will cause the target production to be 
applied, and verifying that the target action handling code 
was run in test. Once a means of running the action 
handling code has been identified, coverage of the action 
handler code must still meet target coverage levels [7]. 
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B. Generation of Positive and Negative Tests for 
Parsers 

The main idea for the generation of positive and 
negative tests for parsers is to modify (mutate) the original 
grammar in order to obtain a language grammar that is 
similar to the original one but not equivalent to it. These 
mutant grammars are fed at the input of a test generator, 
which then produces potentially negative tests [2]. 

A set of modifications (mutants) is obtained from the 
component to be tested such that each mutant contains 
exactly one error. A mutant is said to be killed if it 
produces a result that differs from the result produced by 
the initial component. Coverage criterion dictates that all 
the mutants must be killed. In this case, the mutant 
grammar will be killed if there is a sequence of tokens 
belonging to the language specified by the mutant 
grammar but not belonging to the original language. In 
terms of parsers, this means that the mutant parser 
recognizes the sentence and the original parser does not; 
i.e., the mutant parser turned out to be killed. In the 
following text the idea of obtaining negative tests for 
testing parsers by using modified (mutate) sentences of a 
target language, i.e. by replacing a segment of the sentence 
with an incorrect one (which also includes an empty 
segment), is described.  First we will define set Ft which is 
the set of tokens each of which can follow the token t. The 
complement of the set Ft  in the set of terminals T with an 
empty sequence ε,  will be marked as Rt. 
 

tt FTR \}){(  . (1) 

Suppose α is a sentence in the language, and let the 
token under the number i differ with respect to a given 
language. A mutation of the first kind, which is denoted by 
mut1(α, i), is defined as the replacement of the sentence 
α=t1...tn by the set of sequences of tokens t1...tit'ti+1...tn, 
where t’ is an incorrect token from the set Rti (t' ∈ Rti). A 
mutation of the first kind assumes that incorrect tokens are 
inserted in a sentence. A mutation of the second kind, 
which is denoted by mut2(α, i) is defined as the 
replacement of the sentence α=t1...tn by the set of 
sequences of tokens of the form t1...tit'ti+2...tn, where token  
t' ∈ Rti. A mutation of the second kind assumes that one of 
the tokens is replaced by an incorrect token t'.  

III. ALGORITHMS FOR GENERATING TEST SEQUENCES 

A. Grow Algorithm 

Grow algorithm can be used to generate test sentences 
for parser testing within the Forson tool. In this algorithm, 
different rules for each nonterminal symbol possess a 
certain level of application probability. Associated text is 
assigned to each symbol and it represents its name. For a 
"literal", the associated text is simply its name. For a 
"lexical", the associated text is a random string chosen in 
the set of lexical values provided in the lexicon input file. 
If no lexical value is found, its name (as it appears in 
Bison's token definition) is used as a fallback alternative. 
Every call of Grow algorithm produces a single 
syntactically valid sentence of the target grammar. Extra 
controls must be applied outside the Grow algorithm's 
implementation in order to reiterate the generation until 

the requested number of sentences has been generated. 

B.  Purdom’s Algorithm 

Purdom’s algorithm is a fast algorithm that is useful for 
parser testing and for debugging grammars [8]. Purdom 
decomposes the problem of testing parsers in a fashion 
similar to the grammar-based methodology of testing 
parsers [7]. The first algorithm is used to find a mapping 
from nonterminal symbols to strings of terminal symbols, 
and the second algorithm is used to find a set of 
derivations that cover all productions in a grammar. 
Purdom's high level methods are geared toward the 
verification of parser correctness. The purpose of the 
algorithm is to generate a set of sentences and the parses 
of the sentences, such that each production in the grammar 
is used at least once [8]. The algorithm keeps the total 
length of the sentences short, but generates them rapidly. 
The algorithm proceeds in two distinct phases [3]. The 
first phase statically collects necessary information from 
the grammar and stores them in some tables. The 
information includes: length of the shortest sentence that 
can be derived from each nonterminal and each rule, 
length of the shortest sentence which uses a nonterminal X 
in its derivation, which rule to use to derive the shortest 
sentence from a nonterminal X, which rule to use to 
introduce a nonterminal X into the shortest derivation, and 
so on. The second phase dynamically generates sentences 
by utilizing the information collected in the first phase. A 
table known as ONCE calculates the next rule to be used 
for each nonterminal. The algorithm terminates when all 
the grammar rules have been exploited.  

C. The Extension of Purdom's Algorithm 

Purdom's algorithm produces too few sentences and 
some of them are long and complex, i.e., with complicated 
derivation structures [3]. To avoid the shortcoming of 
Purdom's algorithm, an improved algorithm is proposed in 
[5]. It still accomplishes the rule coverage goal but 
generates more and simpler sentences. The algorithm is 
built upon Purdom's with two main extensions. First, a 
reference length is used in the sentence generation process 
as a reference to control the length of the generated 
sentence. Second, the length of the shortest sentence 
derivable from the current derivation is forecasted in the 
sentence generation process. When choosing a rule to use, 
it compares this shortest length with the reference length 
and takes corresponding length control strategies. 

D. CDRC-P Algorithm 

 Modified Purdom's algorithm is proposed in [6]. It is 
modified by changing table ONCE from calculating the 
next rule to use for each nonterminal to calculating the 
next rule to use for each direct occurrence of each 
nonterminal. In the sentence generation process, it records 
the context (occurrence) of each encountered nonterminal 
and then consults table ONCE to choose the right rule to 
rewrite that nonterminal. When all the rules for all the 
occurrences in the grammar have been covered, the 
generation process ceases. The sentences generated by this 
algorithm are in general more complex than those of 
Purdom's. 
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E. The Extension of CDRC-P Algorithm 

As a modified version of Purdom's algorithm, CDRC-P 
preserves most of the features of Purdom's algorithm. It 
generates relatively few sentences and some of them may 
be rather long and complicated. Therefore the same length 
control idea as in the extension of Purdom's algorithm is 
proposed in [3]. In this way an extension of CDRC-P 
algorithm generates more and simpler sentences achieving 
context-dependent rule coverage. 

F. The Algorithm used in the Basil Tool 

The Basil tool uses the following two-step algorithm 
[7]:  

• Identification of a string in the set of terminals and 
nonterminals that is guaranteed to exercise some 
production in production set P. 

• Walk of graph Gr (whose vertices represent terminals 
and nonterminals and transitions are productions in a 
production set P) starting at the identified string and 
ending at a string of all terminal symbols.  

The resulting string is added to the set of grammar-
based tests for grammar G. Generation of a string that 
exercises some production in P, breadth first search (BFS) 
algorithm of Gr (G) for a vertex entered by a target 
production, for each production in P, is used. However, the 
breadth first search of Gr (G) will commonly cover several 
productions before a given target production is reached. 
Redundant computation can be avoided by running a 
modified breadth first search that searches for a set of 
targets instead of a single target. Once a set of strings is 
found, it remains to resolve these strings into strings of all 
terminal symbols. One solution would be to iterate over 
each string, performing some search in Gr (G) starting at 
the string, and ending at the first vertex in Gr (G) that has 
no out degree. This approach is inefficient because each 
walk in Gr (G) could follow the same set of productions 
for common nonterminals in the strings. A solution is to 
implement a map of a set of nonterminals and to use it to 
save the obtained path, so that the next time the same 
nonterminal can be just replaced with a known result. 

IV. TOOLS FOR TEST SEQUENCE GENERATION  

A. Basil 

Basil is a tool that enables parser testing by executing 
grammar-based tests and generation of test strings by 
using the algorithm described in Section II.A. To enable 
those functionalities, the test string generator is integrated 
into the Basil tool [7]. The Basil framework is a Python 
based set of libraries and applications that are intended to 
assist software developers in two ways. First, the 
framework is meant to provide a common infrastructure 
for programming language implementation. Second, the 
framework should provide reusable components that allow 
the development of cross language software engineering 
and analysis tools. 

B. Forson 

Forson is a tool for the generation of syntactically 
correct sentences on the basis of an input Bison grammar 

file [9]. Any generic Bison grammar file is accepted as an 
input file. Dynamic data structures are used to avoid 
restricting the scope of the possible target grammars [10]. 
Forson contains two operating modes: random and 
coverage. In the random operating mode, sentences are 
generated by using the Grow algorithm. In the coverage 
operating mode sentences are generated by using 
Purdom’s algorithm. In both cases the sentence validity 
does not exceed the syntactic level. There are no built-in 
facilities to ensure the semantic conformance to the target 
language. A partial support to the lexical aspect is instead 
provided, as it is possible for the user to provide a .lexicon 
input file containing a list of lexical values for the terminal 
symbols of the target language. In the case of coverage 
operating mode, a set of sentences is generated such that 
all grammar rules are used. Minimality of this set often 
occurs, but is not guaranteed. Forson works under the 
Linux operating system. It is a batch program. It does not 
provide (nor needs) an interactive user interface. It serially 
opens its files, parses its input, elaborates its internal data 
structure and starts the requested sentence generation. No 
intermediate temporary files are involved, because the two 
generation algorithms (Grow and Purdom), ultimately emit 
the terminal symbols of the target language directly to the 
output stream.  

C. DGL (Data Generation Language) 

DGL (data generation language) is a language for 
automatically generating test data. DGL is based on the 
concept of probabilistic context-free grammars and allows 
data to be generated either systematically or randomly, or 
some combination of the two [11]. The most extensive 
application of this tool has been in the area of design-
verification of VLSI circuits. Although VLSI design 
verification appears to have very little in common with 
software testing, such verification is usually done using a 
software simulation of the circuit rather than the circuit 
itself. Because of this the differences between software 
testing and VLSI design verification have all but 
disappeared.  

D. Toolkit for Generating Sentences from Context-Free 
Grammars 

Another toolkit for generating test sentences is proposed 
in [3]. This toolkit supports sentence generation with 
coverage criteria, sentence enumeration and sentence 
analysis. The toolkit deals with general context-free 
grammars, which have no restrictions on grammars. It 
consists of several algorithms for sentence generation or 
enumeration and for coverage analysis for context-free 
grammars. The sentence generation algorithms provided in 
the toolkit are based on grammar coverage criteria, 
including rule coverage (RC) and context-dependent rule 
coverage (CDRC). For each coverage criterion, two 
algorithms are implemented, one with a sentence length 
control mechanism and the other without it. Besides 
providing implementations of algorithms, it also provides 
a simple graphical user interface, through which the user 
can use the toolkit directly. 
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V. L-IRL (LOLA INDUSTRIAL ROBOT LANGUAGE) PARSER 

TESTING  

A. L-IRL (Lola Industrial Robot Language) 

L-IRL (Lola Industrial Robot Language) is a language 
for programming and the control of cooperative work of 
multiple robots, developed at the Lola Institute in Belgrade 
[4] [12]. L-IRL belongs to the class of problem-oriented 
languages and contains instructions for programming of 
robot motions and instructions for programming the logic 
flow of the program. It enables operations with logical and 
geometrical expressions as well as operations with 
environmental signals. It is characterized by structuring 
and modularity. L-IRL is based on PASCAL programming 
language with certain modifications. The proposal of the 
German standard for robotic languages - IRL (DIN 66312) 
is used as a role model in the realization of modularity and 
robot-specific program constructions. 

B. L-IRL Parser Testing  

Testing of L-IRL parser is performed based on test 
sentences generated by using the Forson tool (using Grow 
algorithm and Purdom’s algorithm) and the tool presented 
in [3] (using Purdom’s algorithm with length control, 
CDRC-P algorithm and CDRC-P algorithm with length 
control). It is performed for the correct language grammar, 
as well as for intentionally modified (mutated) language 
grammar.  

In the case when the Forson tool is used for sentences 
generation, the file with Bison grammar of the L-IRL 
language is used as the input file. The list with lexical 
values connected with the tokens of the target language, in 
a form of l-irl.lexicon file, is used during the testing.  

The following text provides an example of a test 
sentence which is obtained by using Purdom’s algorithm, 
i.e. the coverage operating mode within the Forson tool. 
Besides the standard instructions for programming the 
logic flow of the program, the test sentence contains 
specific L-IRL instructions such as: wait instructions 
(which stop the program execution until a certain 
condition becomes true), pause (which stops the program 
execution for a specified number of seconds) and move 

instructions that provide programming of industrial robot’s 
motions with additional parameters. Seq and endseq block 
marks the sequential execution of the instructions. 

 

 program p3; 
 procedure q3 ()       
 seq  
  if 1 then 
   case 2 of when 3 : 
    for p2 := 1 to 3 step 1  
     wait for 2 timeout 2 sec;  
           endfor  
   default: 
    wait for 1 ; 
      endcase 
  endif;      
  pause 3;  
 endseq 
endproc  
 seq 
  return 1;         
  move  lin 2 act_rob := 3;           
 endseq  
endprogram; 
 

An example of test sentence obtained by using random 
operating mode, i.e. Grow algorithm is given in the 
following text. The test sentence contains the definition of 
complex data type that consists of joint data type (the 
data type that describes the position of industrial robot in 
internal coordinates). 

 

program q3 ;  
 type  
  record  
  joint [3] : p2, q2, q2, p1, p3, p3, q2;  
  endrecord = mainjoint;  
 endtype;  
endprogram; 
 

Full coverage is achieved by using Purdom’s algorithm. 
In the case of the application of Grow algorithm to a 
grammar which has many recursive rules, as is the case 
with L-IRL grammar, an infinite generation may occur. 
Forson assigns the same frequency of choice to all the 
rules of a nonterminal symbol. The only way to try to 
avoid this behavior is to place extra copies of non-
recursive rules in the Bison grammar input file, but this is 
not an elegant solution [10]. 

In the case when we used the tool described in [3] for 
test sentences generation, the input file is the context-free 
grammar. Once a grammar is input, the editor will check 
whether it is well-defined. By default, the start symbol 
corresponds to the left-hand side of the first rule. After 
generation, the number of generated sentences, the 
information on sentences lengths, and the total time for 
generating sentences are also counted. This tool does not 
contain support to the lexical aspect.  

The following text provides an example of a test 
sentence which is obtained by using Purdom's algorithm 
with length control. The test sentence contains robot 
specific data types (joint and addjoint) that describe 
robot positions in internal coordinates. 

 
PROGRAM IDENTIFIER ' ; '  

VAR  
RECORD  

ADDJOINT LEFT_ARR_BR RIGHT_ARR_BR IDENTIFIER ' 
; '  
ENDRECORD IDENTIFIER ' ; '  
JOINT IDENTIFIER ' ; '  

ENDVAR  
SEQ ENDSEQ  

ENDPROGRAM ' ; '    
 

An example of test sentence obtained by using CDRC-P 
algorithm is given in the following text. 

 
PROGRAM IDENTIFIER ' ; '  

VAR  
TYPE_REAL IDENTIFIER ASSIGNEMENT NUMBER_INT ' * ' 
NUMBER_INT ' ; '  

ENDVAR  
ENDPROGRAM ' ; ' 
  
The following text gives an example of test sentence 

obtained by using CDRC-P algorithm with length control. 
L-IRL specific instruction INV is used to calculate an 
inverse value of robot specific data type of POSE that 
describes robot position in external coordinates.  

 
PROGRAM IDENTIFIER ' ; '  

SEQ  
PAUSE INV ' ( ' STRING_VAL ' ) ' ' ; ' ENDSEQ  

ENDPROGRAM ' ; ' 
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Quantitative data on the L-IRL language grammar 
(number of shifts and tokens) as well as information on the 
applied mutations are shown in Table 1. Table 1 also 
shows information about generated positive and negative 
tests for Purdom’s and Grow algorithm, using the Forson 
tool and positive and negative tests for Purdom's algorithm 
with length control, CDRC-P algorithm and CDRC-P 
algorithm with length control (using the tool presented in 
[3]). The tool presented in [3] can also be used for 
obtaining the data such as sentences number, total length, 
average length, maximal length or minimal length. 

 

TABLE 1: QUANTITATIVE DATA ON THE L-IRL GRAMMAR AND 

PARSER TESTING  
Shifts in the grammar 83 
Grammar tokens 110 
Applied mutations 5 
Number of positive tests generated by Purdom 
algorithm  

15 

Number of positive tests generated by Grow 
algorithm  

10 

Number of negative tests generated by 
Purdom algorithm  

15 

Number of negative tests generated by Grow 
algorithm  

10 

Number of positive tests generated by RC 
with length control  

69 

Number of positive tests generated by CDRC  794 
Number of negative tests generated by RC 
with length control  

71 

Number of negative tests generated by CDRC  1042 
Maximal length using RC with length control 
for original L-IRL grammar  

94 

Maximal length using RC with length control 
for mutated L-IRL grammar  

86 

Maximal length using CDRC for original L-
IRL grammar  

3113 

Maximal length using CDRC with length 
control for original L-IRL grammar  

106 

Maximal length using CDRC for mutated L-
IRL grammar   

3116 

Maximal length using CDRC with length 
control for mutated L-IRL grammar  

109 

Semantic coverage in Forson tool No (partial 
support to the 
lexical aspect 
is provided) 

Semantic coverage in tool presented in [3] No  

C. Negative Test Sentences 

Generation of negative test sentences is performed by 
using Grow, Purdom’s, Purdom’s with length control and 
CDRC-P and CDRC-P with length control algorithm. The 
grammar is intentionally "corrupt" (mutated) in order to 
generate syntactically incorrect sentences. Negative test 
sentences are obtained using simple mutations, since 
according to [13]: if simple mutations are detected, then 
the complex mutations will be also detected.  

L-IRL grammar is mutated using the next five 
mutations: in the rule for defining constants the symbol ‘:’ 
is inserted behind the terminal symbol CONST; in the rule 
for defining functions the terminal symbol IDENTIFIER is 
duplicated; in the rule for defining the var part of the 

program the symbol ‘;’ is inserted behind the terminal 
symbol VAR; in the rule for defining new types the 
symbol ‘=’ is replaced with symbol ‘<>’. In the rule for 
stop statement the terminal symbol PAUSE is replaced 
with terminal symbol PAUSE2. The first, second and third 
mutations are mutations of the second kind. The fourth and 
the fifth mutations represent mutations of the second kind. 
Those mutated grammar rules are given in the next text. 

 

CONST ':' constant_definition_list ENDCONST ';'  
variable_definition_part : VAR ";" 

definition_list ENDVAR ';'  
function_definition : FUNCTION IDENTIFIER 

IDENTIFIER function_block ENDFCT ';'  
type_definition : type '<''>' type_identifier  
PAUSE2 [ expression ] ';' 
 

A potentially negative test sentence that includes the 
third mutated grammar rule, obtained by using Forson tool 
and Purdom’s algorithm, is given in the following text. 
The test sentence contains move and move_inc instructions 
that describe industrial robot movement (circle, ptp – point 
to point or lin - linear) with additional parameters. Those 
two instructions specify the coordinate system in which 
the motion is programmed. It can be the user coordinate 
system (move instruction) and the tool coordinate system 
(move_inc instruction). 

 

program p1 ;       
function q2 p2 ( ) : real 

seq 
move circle 1, 2 c_cp;   
move_inc  ptp  3 c_ptp; 

endseq  
endfct       
seq      

move_inc lin 3 c_cp := 2;  
endseq          

endprogram  ;  
 

A potentially negative test sentence obtained by using 
the Forson tool, Grow algorithm and the first mutated 
grammar rule, is given in the following text. 

 

program p3 ; 
const : event : q3 := true; endconst  

endprogram; 
 

The following text provides two examples of negative 
test sentences obtained by using the tool proposed in [3] 
and Purdom's algorithm with length control. The first 
example includes the second mutated grammar rule. The 
second example includes the fourth mutated grammar rule. 

 
PROGRAM IDENTIFIER ' ; '  

VAR ' ; '  
STRING IDENTIFIER ASSIGNEMENT NUMBER_REAL ' , ' 
IDENTIFIER ASSIGNEMENT PI ' , ' IDENTIFIER ' ; '  

ENDVAR  
PROCEDURE IDENTIFIER ' ( ' ' ) '  
ENDPROC  
SEQ ENDSEQ  

ENDPROGRAM 
PROGRAM IDENTIFIER ' ; '  

TYPE  
RECORD TYPE_INT IDENTIFIER ' , ' IDENTIFIER ' ; ' 
ENDRECORD ' < ' ' > ' TYPE_BOOL ' ; '  

ENDTYPE ' ; '  
VAR ' ; '  

OUTPUT IDENTIFIER AT NUMBER_INT  
ENDVAR  

ENDPROGRAM 

Examples of negative test sentences obtained by using 
CDRC-P algorithm with length control are given in the 
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following text. The first example includes the second 
mutated grammar rule and the second example includes 
the fifth mutated grammar rule. 

 
PROGRAM IDENTIFIER ' ; '  

VAR ' ; '  
BOUNDS LEFT_ARR_BR STRING_VAL RIGHT_ARR_BR 
IDENTIFIER ASSIGNEMENT NUMBER_INT ' ; '  

 ENDVAR  
FUNCTION IDENTIFIER IDENTIFIER ' ( ' ' ) ' ' : ' 

IDENTIFIER  
PAR ENDPAR  

ENDFCT  
ENDPROGRAM 

  
 PROGRAM IDENTIFIER ' ; '  

SEQ PAUSE2 IDENTIFIER ' ; ' ENDSEQ  
ENDPROGRAM 
 

D. Checking the Obtained Results 

Test sentences (positive and negative) which are 
obtained by using Purdom’s algorithm, Grow algorithm, 
Purdom's algorithm with length control, CDRC-P 
algorithm and CDRC-P algorithm with length control are 
compiled by using L-IRL IDE (robot programming 
environment) and the obtained results are compared to the 
expected results. The result of compilation for all positive 
test sentences, obtained by using the Forson tool and the 
tool proposed in [3] was successful parsing without error 
notifications. For potentially negative test examples, 
obtained by using the Forson tool, the compiler has 
reported the expected syntax errors. For the sentences 
which are obtained by mutating grammar rules the 
compiler reported an error: Syntax error at line X, 
where X was the number of the line in which the error was 
expected. Compiling of negative test examples was also 
performed for the sentences obtained by using the tool 
proposed in [3]. Previously, the token values had to be 
replaced with the possible lexical values. As the result of 
compiling those test examples, an expected syntax error 
was reported.  

VI. CONCLUSION 

This paper presents a systematic approach to language 
parser testing, based on available techniques. Using these 
techniques and tools the parser of language for industrial 
robot programming is tested. The testing is performed 
based on positive and negative test examples. For the 
testing, several algorithms are used: Purdom’s and Grow 
algorithm as a part of Forson tool and Purdom’s algorithm 
with length control, CDRC-P algorithm and CDRC-P 
algorithm with length control. Grow algorithm was not 
adequate for testing the L-IRL parser because it doesn’t 
have facilities for limiting the size of a randomly 
generated sentence. When using this algorithm for the 
testing of grammar that has many recursive rules an 
infinite generation may occur. Testing the L-IRL parser 
using Purdom’s algorithm enables complete coverage of 
all grammar rules. This algorithm may be applied for 
testing parsers of both large and small programming 
languages, but it is only complete in the case of a parser 
for smaller grammars such is L-IRL grammar. The Forson 
tool is applied for testing with those two algorithms. For 

the testing by using Purdom’s algorithm with length 
control, CDRC-P algorithm and CRDC-P algorithm with 
length control the tool proposed in [3] is used. Unlike the 
Forson tool that is a batch program this tool provides a 
graphical user interface. Besides the functionality of 
sentence generation, it provides sentence enumeration and 
analysis, and quantitative data for used grammars, such as 
sentences number, total length, average length, maximal 
length or minimal length. An extension of Purdom’s 
algorithm implemented within this tool accomplishes the 
rule coverage goal but generates more and simpler 
sentences than the Purdom’s algorithm. CDRC-P 
algorithm with length control produces more and simpler 
sentences, achieving context-dependent rule coverage, 
than the extension of the Purdom’s algorithm. Both used 
tools do not provide semantic coverage of the target 
language. The advantage of the Forson tool is that it has  
partial support to the lexical aspect, but in both cases there 
is a need for manual adjustment of tests sentences. 
Therefore we propose using shorter test cases. 

The paper provides an overview of the techniques and 
methods used in practice, and, after an analysis of possible 
solutions, proposes a methodology for initial testing of a 
newly developed compiler. Based on the presented 
analysis, the appropriate method can be chosen for testing 
the parser for smaller grammars with many recursive rules.  
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