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 
Abstract — The paper presents analysis of the second 

order band-pass and notch filter with a dynamic damping 
factor βd of fractional order. Factor βd is given in the form of 
fractional differentiator of order , i.e. βd=β/s, where β and 
 are adjustable parameters. The aim of the paper is to 
exploit an extra degree of freedom of presented filters to 
achieve the desired filter specifications and obtain a desired 
response in the frequency and time domain. Shaping of the 
frequency response enables achieving a better phase response 
compared to the integer-order counterparts which is of great 
concern in many applications. For the implementation 
purpose, the paper presents a comparison of four 
discretization techniques: the Osutaloup’s Recursive 
Algorithm (ORA+Tustin), Continued Fractional Expansion 
(CFE+Tustin), Interpolation of Frequency Characteristic 
(IFC+Tustin) and recently proposed AutoRegressive with 
eXogenous input (ARX)-based direct discretization method. 

Keywords — Butterworth filter, Discretization, Fractional-
order filter, Fractional calculus, Frequency response. 

I. INTRODUCTION 

large number of technical and natural phenomena 
exhibit a fractional-order (FO) dynamics which by 

itself leads to a widespread application of fractional 
calculus (FC) in numerous interdisciplinary fields of 
science and engineering. FC offers a large exploiting 
potential since it provides more accurate models than 
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classical integer-order ones [1]-[2]. Moreover, the use of 
fractional differ-integrators (derivatives and integrators) 
enables the characterization of FO systems with their 
entire history and modeling non-local and distributed 
effects. The history and fundamental theoretical aspects of 
FC may be found in [1]-[5]. 

The area of application of FC is increasing greatly and 
rapidly. FC is extensively used in: bioengineering and 
biomedical applications [6,7], analysis and synthesis of 
FO electrical elements [8]-[11], memristive FO systems 
[12], [13], power electronics for FO modeling power 
converters [14]-[16], digital image and signal processing 
[17], [18], electromagnetic theory [19], [20], time-
fractional telegrapher equations for modeling transmission 
lines [21], [22], control systems for designing FO 
controllers [23]-[27], mechanics [28], [29], diffusion and 
wave propagation [30]-[33], nanotechnology, agriculture, 
economy, etc.  

There is a permanent progress in the application of FC 
to signal analysis and processing in the last twenty years. 
The main application advantage of FO filter is an extra 
degree of freedom allowing a more precise control of the 
attenuation slope, which is an efficient feature in 
biomedical engineering [34], [35]. Shaping the exact 
frequency response including a prespecified bandwidth is 
of great concern for many filter applications such as: PLLs 
(Phase Locked Loops), e.g. in [36] it is of great 
importance to remove a large negative phase angle in 
feedback loop in relay-based critical point estimation, as 
well as in the processing of biomedical signals (ECG, 
EEG etc.) [37].  

The area of application of band-pass and band-stop 
filters is large: band-pass filters are widely used in 
wireless transceivers, optical microscopy, seismology, 
while band-stop filters are extensively used in the 
Riemann laser spectroscopy, RF applications, etc. That is 
why this paper is focused on the analysis of the second 
order band-pass and notch filter with FO dynamic 
damping factor βd. The factor βd has a form of fractional 
differentiator of order , i.e. βd=β/s, where fractional 
order   and adjustable real parameter β are determined to 

meet specified requirements. For =0 and 2   filter is 

reduced to a classical second-order filter of Butterworth 
type. Actually, these parameters are adjusted to obtain a 
desired frequency and time domain response.  
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This paper is organized as follows. First, a short 
introduction to the fractional calculus is given in Section 
2. Section 3 elaborates the second order band-pass and 
notch filter with a fractional damping factor. Section 4 
provides a comparison of four discretization methods for 
the purpose of effective digital implementation of 
considered filters. Section 5 gives concluding remarks of 
the paper. 

II. FUNDAMENTALS OF FRACTIONAL CALCULUS 

FO differ-integrator is an operator of FC which arises 
from a generalization of classical differentiation and 
integration operators. The transfer function of FO differ-
integrator is s where s is the Laplace variable and  is an 
arbitrary real number. For a positive , differ-integrator is 
a generalization of classical integer order derivative, while 
for a negative α it is a generalization of repeated, or n-
fold, integral. 

Among many others, three most frequently used 
definitions for the FO derivative and integral operators are 
the Riemann-Liouville, Caputo and Grunwald-Letnikov 
definitions [3-5]. The left Riemann-Liouville (RL) 
fractional integral operator of order  is defined as 
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where 1 .n n   In applications the case (0,1)   is 

of the greatest importance when equation (2) is reduced to 

0 ( )tD f t  for a=0.  

 After adopting the definition, an intermediate step for 
frequency domain signal analysis is the calculation of the 

Laplace transform of RL derivative 0 ( ).tD f t  It simplifies 

calculations through the algebraic analysis of linear 
systems in complex s-domain. Assuming the existence of 

initial conditions in (2), the Laplace transform of 0 ( )tD f t  

is 
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while for zero initial conditions (3) is reduced to  

  0 ( ) ( ).tL D f t s F s   (4) 

III. ANALYSIS OF BAND-PASS AND NOTCH FILTER WITH 

FRACTIONAL-ORDER DAMPING FACTOR 

Nowadays, FO filters are a growing area of scientific 
research, so recently different studies of FO filters have 
been conducted. Papers [38, 39] introduce the FO 
Butterworth filter dealing with its analysis, active and 
passive synthesis while the design and implementation of 
FO Butterworth filter for processing biomedical EEG 

signals is considered in [37]. The FO Butterworth low-
pass digital filter is designed in [40] for sharpening a 
digital image whose quality is adjusted through changing 
the FO of the filter. However, faster roll-off may be 
achieved, e.g. with the Chebyshev filter at the expense of 
ripples in pass and stop bands [41], so in [42] is developed 
a complex FO low-pass filter. 

The most common types of analog filter types are the 
Butterworth, Chebyshev (I and II), Bessel and Elliptic. Let 
us set aside the Butterworth filter which is characterized 
by a maximally flat response with no ripple compared to 
the others. The magnitude frequency response rolls-off 
smoothly and monotonically, with a low-pass or highpass 
roll off of 20dB/dec for every pole. Thus, a third order 
Butterworth band-pass filter would have an attenuation 
rate of -60dB/dec and 60 dB/dec. A classical integer-order 
analog Butterworth filter of order n has a frequency 
magnitude response [43] 
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where c is the 3 dB cut-off frequency. For n=2 a 
corresponding transfer function for magnitude response 
(5) is  
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The most common filter structures are those based on 
the analog second-order filter. Hence, in this paper the 
second order band-pass filter is defined with a normalized 
transfer function 
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where d =
s
  is a dynamic FO damping parameter,  is 

a FO parameter, and β is a real adjustable parameter. The 
parameter β is generally independent of  and is used to 
meet specified requirements. The normalized cut-off 
frequency c=1 s-1 corresponds to Eq. (7), while by 
substituting s with s/c in (7), the filter can be designed 
for a desired cut-off frequency c. 

On the basis of (7), the corresponding notch filter 
transfer function is defined as Fn(s)=1-Fbp(s), i.e. 
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It is obvious that for 0  and 2   Eq. (7) and (8) 

are reduced to a classical integer-order band-pass and 
notch filter of Butterworth type, respectively, with the 
same characteristic equation of low-pass Butterworth filter 
in Eq. (6). 

In order to improve a phase response and not deteriorate 
a magnitude response, parameter β is determined 
following the idea in [44] to keep the same dominant 
dynamics which is determined with roots of denominator 
in Eq. (7) and (8). First, the overshoot Ap=4.32% in the 
unit-step response of the classical second-order low-pass 
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Butterworth filter 2
lp ( ) 1/ ( 2 1)F s s s    is calculated. 

Then, the unit-step response of FO low-pass counterpart 
of filters (7) and (8) 
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is determined via numerical inversion of Laplace 
transform which enables to calculate β to keep the same Ap 
for different values of fractional order . The obtained 
unit-step response of filter (9) for 

{0; 0.1; 0.2; 0.3; 0.4; 0.5}.   is shown in Fig. 1, and the 

calculated values of β are given in Table 1. 
The applied idea actually leads to preserving the same 

bandwidth of the systems since the dynamics of low-pass, 
band-pass and notch filters in Eq. (7)-(9) is determined by 

roots of the same characteristic equation 2 1s s  , 

which are shown in complex s-plane in Fig. 2 for 
{0; 0.1; 0.2; 0.3; 0.4; 0.5}.   

 
Fig. 1. Unit-step response of low-pass filter defined in  

Eq. (9) for {0; 0.1; 0.2; 0.3; 0.4; 0.5}.   and specific   to 

obtain the same overshoot Ap=4.32%. 
 

TABLE 1:  VALUES OF ADJUSTABLE PARAMETER β TO MEET 

SPECIFIED REQUIREMENTS IN OVESRHOOT 

 β 

0 2 1.4142  

0.1 0.8015 2 1.1335  

0.2 0.7058 2 0.9982  

0.3 0.6519 2 0.9219  

0.4 0.6208 2 0.8779  

0.5 0.6044 2 0.8547  
 

The magnitude and phase response for FO band-pass 

filter with a damping factor d = / , 0s     in Eq. (7) 

are given with analytic formulae (10) and (11) 
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while for notch filter described with Eq. (8), one obtains  
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Fig. 2. Roots of characteristic equation of fractional-band 

pass filter Fbp(s) for {0; 0.1; 0.2; 0.3; 0.4; 0.5}.   to obtain 

the same overshoot Ap=4.32% of Flp(s) in Fig. 1. 

Values of the magnitude and phase for band-pass and 
notch filters at important frequencies are given in Table 2. 

TABLE 2: MAGNITUDE AND PHASE VALUES AT IMPORTANT 

FREQUENCIES OF THE PROPOSED BAND-PASS AND NOTCH FILTERS 
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The magnitude and phase frequency responses of FO 
band-pass filter in Eq. (7) with a damping factor 

d = / s   are shown in Fig. 3. 

The bandwidth of band-pass filter in Eq. (7) shown in 
Fig. 3 for 0   is defined with a lower cut-off frequency 

cl

10.52 s   and upper frequency c2

11.93 .s   The 

magnitude and phase frequency responses of FO notch 

filter in Eq. (8) with a damping factor d = / s   are 

shown in Fig. 4. 
As it can be seen from Figs. 3 and 4, additional 

flexibility is supported by the use of presented band-pass 
and notch filter with a FO damping factor. By choosing an 
FO parameter it is enabled to adjust band-pass/band-reject 
and to decrease a large negative phase for notch filter 
which is important in some applications such as in system 
identification [36]. Indeed, there are increasing numbers of 
designs of FO filters with a possibility of adjusting and 
shaping a desired frequency response, e.g. in [44] is 
reported an electronic way of control of FO order and pole 
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frequency of low-pass filter through adjustment of the 
current gain of current amplifiers. 

 
Fig. 3. The magnitude and phase frequency characteristics 

of fractional-band pass filter Fbp(s) for 
{0; 0.1; 0.2; 0.3; 0.4}.   and specific   to obtain the 

same overshoot Ap=4.32% of Flp(s) in Fig. 1. 
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Fig. 4. The magnitude and phase frequency characteristics 
of FO notch filter Fn(s) for {0; 0.1; 0.2; 0.3; 0.4}.   and 

specific   to obtain the same overshoot Ap=4.32% of 

Flp(s) in Fig. 1. 

IV. ANALOG/DIGITAL REALIZATION OF FRACTIONAL-
ORDER FILTERS 

The main building blocks of FO filters are fractional 

integrators and differentiators .s  FO differentiator is 
obtained for 0 1   while for 1 0    it is reduced 
to FO integrator. Analog low-pass, high-pass, band-pass, 
notch and all-pass filters may be realized via various 
topologies of ladder networks consisting of resistors 
or/and capacitors or/and inductors. There are two general 
approaches in the design of an analog FO filter: the first is 
to approximate the FO filter transfer function with an 
integer-order equivalent and the second is using a FO 
element. The fabrication techniques of FO elements are 
nowadays well developed, but they are still an emerging 
area of research due to upcoming FO nanomaterials, 
which is elaborated in [35]. 

However, digital filters are principally characterized 
with more versatility, reliability, flexibility than analog 
filters in signal processing, as well as with 
programmability, i.e. without a need to redesign the 
hardware, etc. [41]. Digital realization of FO systems is 
supported with an adequate discretization method. The 
most popular methods are PSE (Power Series Expansion) 
and CFE (Continued Fraction Expansion) approximations 
of the fractional operators. A number of discretization 
schemes for purpose of digital implementation of FO 
systems is available in literature such as: bilinear 
transformation (Tustin or trapezoidal rule) which is 
widely used for discretization of filters, then forward 
Euler, backward Euler and other variations of T-
integrator [45,46]. Direct and indirect discretization 
algorithms have been discussed in [47], novel 
transformation polynomials for discretization of analog 
systems are reported in [48], while an efficient method for 
discretization based on least-squares fitting in time domain 
is presented in [49]. 

In this paper, four discretization techniques of band-
pass filter Fbp(s) denoted with: ORA, CFE, IFC and ARX 
are analysed. ORA and CFE make rational approximation 

of differ-integrator ,s  IFC approximates directly a 

continuous filter transfer function. These three techniques 
are followed with one of discretization rules, while the 
fourth ARX based method directly discretizes the 
continuous-time system. 

A. Oustaloup recursive algorithm (ORA)  

ORA algorithm, elaborated in [50], for the 

approximation of FO differ-integrator s  gives the 
following expression of 3rd order for 0.2    
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B. Continued fractional expansion (CFE) 

CFE algorithm of 3rd order for s  around frequency 
11 s   according to [35, p.4] is given with 
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while for 0.2   one obtains 
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C. Interpolation of frequency characteristic (IFC) 

IFC algorithm is directly applied to a filter transfer 
function Fbp(s) and approximates it through interpolation 
of frequency characteristic on the basis of overlapping the 
frequency characteristics in selected discrete frequency 
points [51]. For [0.01; 0.1;1;10;50]  the 5th order 

rational approximation of Fbp(s) is 
4 5 4 3 2 5
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All of these methods of rational approximation (ORA, 
CFE, IFC) may be discretized in different ways, as 
previously discussed, but in this paper the Tustin rule 

2( 1)

( 1)

z

T zs
s 


  is used, where Ts is a sampling time. Hence, by 

using the Tustin rule and taking Ts=0.06 s in (15), (17) and 
(18), one obtains the 5th order discrete equivalents 

ORA CFE IFC

bp bp bp( ), ( ), ( ),F z F z F z  respectively. 

D. AutoRegressive with eXogenous input (ARX) based 
method 

In addition to the above, ARX-based direct 
discretization method for arbitrary non-rational systems, 
recently proposed in [52], is successfully applicable to FO 
filters. This method uses an one-period bipolar test signal 
shown in Fig. 5 at the input of filter and applies least-
square routine to solve parameter estimation problem. By 
applying ARX based approximation algorithm, for a 
selected interval of length Tm=60 s, time period =20 s 
and N=1000 calculation points one obtains directly the 
transfer function of discrete equivalent of band-pass filter 
Fbp(s) 
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bp5/5

5 4 3 2

5 4 3 2
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with a sample time m / 0.06 s.sT T N   

The comparison of presented discretization techniques 
is performed through the magnitude and the frequency 
characteristics of FO Gbp(s) and its discrete equivalent 
Gbp(z) as it is shown in Fig. 6. Vertical thick dark line in 
Fig. 6 and Fig. 7 denotes the Nyquist frequency. 

 
Fig. 5. Input u(t) and output y(t) for Tm=60 s and =20 s 

used as data for ARX-based discretization of band-pass 
filter transfer function Fbp(s) for 0.2.   

The obtained results indicate that all considered 
discretization methods retain frequency characteristics 
adequately over a wide frequency range. However, all of 
these approximation techniques can be somehow 
improved, e.g.: ORA by selection of a wider frequency 
range, IFC with more appropriate initial frequency points, 
ARX with selection of parameters Tm and , as well as 
with selection of higher order approximation, etc. Without 
loss of generality, the presented filter design approach and 
analysis including discretization techniques may be 
effectively applied to high-order fractional filters. 

 
Fig. 6. Comparison of magnitude characteristics of Fbp(s) 
for 0.2   and discrete equivalents obtained with ORA, 

CFE, IFC (+Tustin) and ARX method. 
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Fig. 6. Comparison of phase characteristics of Fbp(s) for 

0.2   and discrete equivalents obtained with ORA, 
CFE, IFC (+Tustin) and ARX method. 

V. CONCLUSION 

The second order band-pass and notch filters with a 
dynamic damping factor of fractional-order are analyzed 
in this paper. Conducted analysis shows that a fractional-
order parameter enables more precise and flexible shaping 
of the frequency responses of both filters which is of great 
importance in a large number of applications. At the end, 
several methods of discretization techniques are compared 
to demonstrate how these fractional-order filters may be 
effectively implemented in a digital form.  

REFERENCES 

[1] J.Tenreiro Machado, V. Kiryakova, F. Mainardi, “Recent history of 
fractional calculus”, Communications in Nonlinear Science and 
Numerical Simulation, vol. 16, issue 3, pp. 1440-1153, 2011. 

[2] In: Lazarević MP (editor), Advanced topics on applications of 
fractional calculus on control problems, system stability and 
modeling, WSEAS, p.202, ISBN:978-960-474-348-3, ID9028, 
2014. 

[3] K.B. Oldham, J. Spanier, Fractional calculus: theory and 
applications, differentiation and integration to arbitrary order, 
Academic Press, NewYork, 1974. 

[4] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications 
of Fractional Differential Equations, Elsevier, Amsterdam, 2006. 

[5] I. Podlubny, Fractional Differential Equations, Academic Press, 
San Diego, 1999. 

[6] R.L. Magin, Fractional Calculus in Bioengineering, Begell House 
Publishers, 684 pages, 2006. 

[7] T. J. Freeborn, “A Survey of Fractional-Order Circuits Models for 
Biology and Biomedicine”, IEEE J. Emerging and Selected Topics 
in Circuits and Systems, vol. 3, no. 3, pp, 416-424, Sept. 2013.  

[8] A.G. Radwan. K.N. Salama, “Passive and Active Elements Using 
Fractional LβC Circuit”, IEEE Trans on Circuits and Systems-I, 
vol. 58, no. 10, pp. 2388-2397, Oct. 2011. 

[9] A.G. Radwan, K.N. Salama, “Fractional-order RC and RL circuits. 
Circuits Syst. Signal Process, vol. 31, pp. 1901–1915, 2012. 



Bošković et al.: Analysis of the Band-Pass and Notch Filter with Dynamic Damping  37 

[10] G.W. Bohannan, S.K. Hurst, and L. Spangler, Electrical Component 
with Fractional-Order Impedance, U.S. Patent Application, No. 
11/372, 232, 2006. 

[11] M.Č. Bošković, T.B. Šekara, B. Lutovac, M. Daković, P.D. Mandić, 
M.P. Lazarević, “Analysis of Electrical Circuits including 
Fractional Order Elements”, 6th Mediterranean Conference on 
Embedded Computing (MECO), pp. 1-6 , Bar, Montenegro, 2017. 

[12] C. Coopmans, I. Petras, and Y.Q. Chen, “Analogue fractional-order 
generalized memristive devices,” in ASME 2009 Int. Design Eng. 
Tech. Conf. Comput. Inf. Eng. Conf. (IDETC/CIE), San Diego, 
USA, 2009. 

[13] M.P. Lazarević, P.D. Mandić, B. Cvetković, T.B. Šekara, B. 
Lutovac, “Some Electromechanical Systems and Analogies of 
Mem-systems Integer and Fractional Order”, 5th Mediterranean 
Conference on Embedded Computing, pp. 230-233, MECO 2016, 
Bar, Montenegro 

[14] C. Wu, G. Si, Y. Zhang, N. Yang, “The fractional-order state-space 
averaging modelling of the Buck–Boost DC/DC converter in 
discontinuous conduction mode and the performance analysis”, 
Nonlinear Dynamics, vol.79, issue 1, pp. 689-703, Jan. 2015. 

[15] A.G. Radwan, A.A. Emira, A.M. AbdelAty, A.T. Azar, “Modeling 
and analysis of fractional order DC-DC converter”, ISA 
Transactions, 2017. DOI:10.1016/j.isatra.2017.06.024 

[16] X. Chen, Y.Chen, B. Zhang, D. Qiu, “A Modeling and Analysis 
Method for Fractional-Order DC-DC Converters”, IEEE Trans on 
Power Electronics, vol. 32, issue 9, pp. 7034-7044, Sept 2017. 

[17] D. Chen,Y. Chen Y, D. Xue, “Fractional-order total variation image 
denoising based on proximity algorithm”, Applied  Mathematics 
and Computation, vol. 257, pp. 537-545, April 2015. 

[18] L.A. Said, S.M. Ismail, A.G. Radwan, A.H. Madian, M.F. Abu El-
Yazeed, A.M. Soliman, “On The Optimization of Fractional Order 
Low-Pass Filters”, Circuits Systems and Signal Processing, vol. 35, 
Issue 6, pp. 2017-2039, June 2016. 

[19] J.A. Tenreiro Machado, I.S. Jesus, A. Galhano, J.B. Cunha, 
“Fractional order electromagnetics”, Signal Processing, vol. 86, pp. 
2637-2644, 2006. 

[20] A. Shamim, A.G. Radwan, K.N. Salama, “Fractional smith chart 
theory and application”, IEEE Microwave and Wireless 
Components Letters, vol. 21, issue 3, pp. 117-119, March 2011. 

[21] R.F. Camargo, E.C. de Oliveira, E., J. Vaz Jr., “On the generalized 
Mittag-Leffler function and its application in a fractional telegraph 
equation”, Math. Phys. Anal. Geom, vol. 15, pp. 1–16 2012. 

[22] S.M. Cvetićanin, D. Zorica, M.R. Rapaić, “Generalized time-
fractional telegrapher’s equation in transmission line modeling”, 
Nonlinear Dynamics, vol. 88, pp. 1453-1472, April 2017. 

[23] A. Pommier, J. Sabatier, P. Lanusse, A. Oustaloup, “CRONE 
Control of a Nonlinear Hydraulic Actuator”, Control Engineering 
Practice, vol. 10, issue 4, pp. 391-402, 2002. 

[24] J. Sabatier, A. Oustaloup, A.G. Iturricha, F. Levron, “CRONE 
Control of Continuous Linear Time Periodic System: Application to 
a Testing Bench”, ISA Transactions, vol. 42, Issue 3, pp. 421-436, 
2003. 

[25] I. Petráš, “Tuning and implementation methods for fractional-order 
controllers”, Fractional Calculus and Applied Analysis, vol. 15, pp. 
issue 2, pp. 282–303, June 2012.  

[26] B.B. Jakovljević, M. R. Rapaić, Z.D. Jeličić, T.B. Šekara, 
“Optimization of distributed order fractional PID controller under 
constraints on robustness and sensitivity to measurement noise”, 
International Conference on Fractional Differentiation and Its 
Applications (ICFDA), pp. 1-6, Catania, June 2014 

[27] P.D. Mandić, T.B. Šekara, M.P. Lazarević, M. Bošković, 
“Dominant pole placement with fractional order PID controllers: D-
decomposition approach”, ISA Transactions, vol. 67, pp. 76-86, 
2017. 

[28] K.A. Lazopoulos, A.K. Lazopoulos, “Fractional derivatives and 
strain gradient elasticity”, Acta Mechanica, vol. 227, issue 3, pp. 
823-835, March 2016. 

[29] S.S. Sheoran, K.K. Kalkal, S. Deswal, “Fractional order thermo-
viscoelastic problem with temperature dependent modulus of 
elasticity”, Mechanics of Advanced Materials and Stuctures, vol. 
23, issue 4, pp. 407-414, 2016. 

[30] T.M. Atanackovic, S. Pilipovic, D. Zorica, “A diffusion wave 
equation with two fractional derivatives of different order”, Journal 
of Physics A: Mathematical and Theoretical, vol. 40, no. 20, pp. 
5319–5333, 2007. 

[31] M.R. Rapaić, Z.D. Jeličić, “Optimal control of a class of fractional 
heat diffusion systems”, Nonlinear Dynamics, vol. 62, issue 1-2, pp. 
39–51, Oct. 2010. 

[32] G.M. Mophou, “Optimal control of fractional diffusion equation”, 
Computers & Mathematics with Applications, vol. 61, issue 1, pp. 
68-78, Jan. 2011. 

[33] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. 
Dzielinski, P. Ziubinski, “Diffusion process modeling by using 
fractional-order models”, Applied Mathematics and Computation, 
vol. 257, pp. 2–11, April 2015. 

[34] K. Biswas, G. Bohannan, R. Caponetto, A. Mandes Lopes, J.A. 
Tenreiro Machado, Fractional-Order Devices, Springer Int 
Publishing, 2017. 

[35] G. Tsirimokou, C. Psychalinos, A. Elwakil, Design of CMOS 
Analog Integrated Fractional-Order Circuits, Applications in 
Medicine and Biology, Springer Int Publishing, 2017. 

[36] T.B. Šekara, M.R. Mataušek, “Relay-based critical point estimation 
of a process with the PID controller in the loop”, Automatica, vol. 
47, issue 5, pp. 1084-1088, May 2011. 

[37] J. Baranowski, P. Piątek, “Fractional Band-Pass Filters: Design, 
Implementation and Application to EEG Signal Processing”, 
Journal of Circuits, Systems, and Computers, vol. 26, issue 11, pp. 
1-21, No. 11, 2017. 

[38] A.S. Ali, A.G. Radwan, A.M. Soliman, “Fractional Order 
Butterworth Filter: Active and Passive Realizations”, IEEE journal 
on Emerging and Selected Topics in Circuits and Systems, vol. 3, 
issue 3, pp. 346-354, Sept. 2013. 

[39] A. Acharya, S. Das, I. Pan, S. Das, “Extending the concept of 
analog Butterworth filter for fractional order systems”, Signal 
Processing, vol. 94, pp. 409-420, 2014. 

[40] C-C Tseng, S-L Lee, “Closed-form designs of digital fractional 
order Butterworth filters using discrete transforms”, Signal 
Processing, vol. 137, pp. 80-97, 2017. 

[41] L.D. Paarmann, Design and Analysis of Analog Filters: A Signal 
Processing Perspective, Springer, Berlin, 2001. 

[42] A.M. AbdelAty, A. Soltan, W.A. Ahmed, A.G. Radwan, “On the 
Analysis and Design of Fractional-Order Chebyshev Complex 
Filter”, Circuits, Systems and Signal Processing, vol 37, issue 3, pp 
915-938, March 2018. 

[43] S. Butterworth, “On the theory of filter amplifiers”, Wireless 
Engineer, vol. 7, 536–541, 1930. 

[44] J. Dvorak, L. Langhammer, J. Jerabek, J. Koton, R. Sotner, J. Polak, 
„Synthesis and Analysis of Electronically Adjustable Fractional –
Order Low-Pass filter“, Journal of Circuits, Systems, and 
Computers, vol. 27, issue 2, Feb. 2018. 

[45] R. Boxer, S. Thaler, “A Simplified Method of Solving Linear and 
Nonlinear Systems”, Proceeding of IRE, vol. 44, no. 1, pp. 89-101, 
Jan. 1956. 

[46] J.M. Smith, Mathematical Modeling and Digital Simulation for 
Engineers and Scientists, Second Ed., Wiley, New York, 1987. 

[47] M.R. Rapaić, T.B. Šekara, “Novel direct optimal and indirect 
method for discretization of linear fractional systems”, Electrical 
Engineering, vol. 93, issue 2, pp. 91-102, June 2011. 

[48] T.B. Šekara, “New Transformation Polynomials for Discretization 
of Analogue Systems”, Electrical Engineering, vol. 89, issue 2, pp. 
137-147, Dec. 2006. 

[49] R.S. Barbosa, J.A. Tenreiro Machado, M.F. Silva, “Time domain 
design of fractional differintegrators using least-squares”, Signal 
Processing, vol. 86, issue 10, pp. 2567-2581, Oct. 2006. 

[50] A.Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, “Frequency-band 
complex noninteger differentiator: characterization and synthesis”, 
IEEE Transactions on Circuits and Systems I: Fundamental Theory 
and Applications, vol. 47, issue 1, pp. 25-39, Jan. 2000. 

[51] M.R. Rapaić, T.B. Šekara, M.P. Lazarević, “On discrete finite 
dimensional approximation of linear, infinite dimensional systems”, 
in Fractional Calculus Theory, Mathematics Research 
Developments, pp. 257-274, 2014. ISBN 978-1-63463-002-3 

[52] M.Č. Bošković, T.B. Šekara, M. Rapaić, M. Lazarević, P. Mandić, 
“A Novel ARX-based discretization method for linear non-rational 
systems”, International Conference on Fractional Differentiation 
and its Applications (ICFDA 2016), vol. 1, pp. 343-352, Novi Sad, 
Serbia, July 2016, ISBN: 978-86-7892-830-7 

[53] M. Bošković, T.B. Šekara,, M.R. Rapaić, B. Lutovac, M. Daković, 
V. Govedarica, “Novel band-pass and notch filter with dynamic 
damping of fractional order”, 25th Telecommunication Forum 
(TELFOR), Belgrade, Serbia, 21-22 Nov. 2017. 

 


	Vol_10_No_01_06

