
74 Telfor Journal, Vol. 12, No. 2, 2020.

Abstract — Software-Defined Networking (SDN) and Cloud
Computing are now two of the most adopted technologies, on
which many organizations are working to enhance every day.
For instance, SDN is particularly emerging to solve
networking complexity in cloud data centers, so we see many
attempts to integrate Network and Cloud Managers. In this
paper, we address an integration of these two technologies,
particularly a yet undiscussed combination of two popular
frameworks: OpenNebula and OpenDaylight. These open
source solutions are widely used for cloud management and
network management, yet there are no developed modules for
communication between the two. Therefore, we propose a
simple way for OpenDaylight to manage OpenNebula's
compute nodes, using a common component they both
support: OpenvSwitch. We compared OpenNebula with the
popular OpenStack cloud manager, as it is attracting more
attention in both academia and industry, by evaluating some
relevant time metrics and discussing the differences of the
proposed technologies. Then, we deployed a test topology to
conduct some traffic management techniques in this
integration. Our results show that OpenNebula's deployment
time as well as clean-up time is significantly lower than
OpenStack, but OpenStack takes less time to the running
state, besides proving the simplicity of traffic management in
OpenNebula using OpenDaylight.

Keywords — Software-Defined Networking, Cloud
Computing, OpenNebula, OpenDaylight, Traffic
management.

I. INTRODUCTION

HE Software-Defined Networking (SDN) concept has
been recently growing to address the complexity of

networks. Separating Data and Control planes allows a
better management and innovation in this field and makes
it finally follow the ongoing change in the IT and computing
industry. Going back to the central model, especially
brought by the appearance of Cloud Computing, SDN came
to change the domination of standard protocols and the tied
control/data planes in each device, all to allow customizing
and automating networks.

Similar to SDN, Cloud Computing came to change
hardware and software infrastructures, by providing several
services as storage and computing powers, without being
tied to a certain hardware location or configuration.

With the rise of cloud computing, the SDN concept finds
its interest, because of the enormous size and complexity of
networks and hardware involved. However, integrating
these two concepts still suffers many challenges,
particularly in the field of open source software, where it is
often necessary to show a bit of ingeniousness to find the
right solutions to make new integrations.

One of the most important and mature projects in SDN
contributions is OpenDaylight (ODL), which is a modular
open source platform. On the other hand, cloud frameworks
such as OpenNebula (OPNBL) and OpenStack (OPSTK),
are largely used to build different cloud environments and
are of great utility since some virtualization solutions are
not affordable, or they rely on cloud providers with strict
policies.

In a previous paper presented at the TELFOR conference
[1], we focused on the Integration of ODL and OPNBL.
This integration was not obvious as there are no modules in
ODL or OPNBL to ensure the connection between the two,
unlike the OPSTK case. This issue was resolved by using
an intermediate open source solution that they both support
which is OpenvSwitch (OvS). To the best of the authors'
knowledge, this implementation has not been reported
before.

Here we present an extended version of this work,
including further analysis and validation of this integration,
in terms of testing traffic management possibilities using
ODL features. Therefore, we propose a use case topology
and a set of flow rules as a demonstration.

The rest of the paper is organized as follows: Section 2
will briefly present the used open source solutions, and then
in Section 3 we list the related work to our study. Section 4
will describe the setup made, while Section 5 explains the
use case topology setup. We discuss the results in Section
6. Finally, we conclude the paper in Section 7.

OpenDaylight and OpenNebula Integration:
Testing Traffic Management

Omayma Belkadi, Alexandru Vulpe, Member, IEEE, Yassin Laaziz,
and Simona Halunga, Member, IEEE

T
Paper received May 22, 2020; accepted September 22, 2020. Date

of publication December 25, 2020. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Grozdan Petrović.

This paper is revised and expanded version of the paper presented
at the 27th Telecommunications Forum TELFOR 2019 [1].

This work was partially funded by a grant of the Romanian National
Authority for Scientific Research and Innovation, CCCDI –
UEFISCDI, project number ERANET-ERAGAS-ICT-AGRI3-
FarmSusteinaBl-1, within PNCDI III and by a grant of the Ministry of
Research and Innovation, UEFISCDI Romania, project no. 8Sol/2018
within PNCDI III.

Omayma Belkadi is with the Abdelmalek Essaadi University,
National School of Applied Sciences, LabTIC, Tangier, Morocco (e-
mail: belkadi.omayma@gmail.com).

Alexandru Vulpe is with the University Politehnica of Bucharest,
Telecommunications Department, Bucharest, Romania (e-mail:
alex.vulpe@radio.pub.ro).

Yassin Laaziz is with the Abdelmalek Essaadi University, National
School of Applied Sciences, LabTIC, Tangier, Morocco (e-mail:
ylaaziz@uae.ma).

Simona Halunga is with the University Politehnica of Bucharest,
Telecommunications Department, Bucharest, Romania (e-mail:
simona.halunga@upb.ro).

Belkadi et al.: OpenDaylight and OpenNebula Integration: Testing Traffic Management 75

II. SDN AND CLOUD PLATFORMS

A. Opendaylight

ODL [2] is an open-source SDN controller, developed in
2013 at first as a collaboration between IBM and Cisco,
then hosted under the Linux Foundation. The main goal
from this project was having a tool to manage and deploy
SDN and even Network Function Virtualization (NFV)
solutions. By now, with a very active community, ODL has
reached its 10th release, Neon, in March 2019, providing
more enhanced use cases besides improved stability and
scalability.

Furthermore, ODL is a combination of many integrated
projects. In each release, board and chair members
sponsoring the project decide adding, enhancing or
removing a set of features and components. In this work, we
rely specifically on low-level interfaces such as OpenFlow
and OVSDB (OvS DataBase management protocol) during
our setup.

The motivation is that OpenFlow is the protocol allowing
communication between OpenDaylight and its network,
while OVSDB is the southbound protocol to manage and
define the schema for the OvS database to grant the
communication between the SDN controller and the virtual
switch. In addition to that, we use in our work ODL User
Experience (DLUX) application feature, which provides a
web user interface to visualize the network, its topology and
connected nodes.

B. OpenNebula

OPNBL [3] is a modular system implementing many
Cloud architectures and providing several services. It is an
open source, highly scalable and advanced cloud computing
manager. The Distributed Systems Architecture (DSA)
Research Group launched in 2008 the first release of
OPNBL. Due to its modularity, the project has been
significantly enhanced by the recent version, 5.8.1 that we
are using in this work. Not only that, but OPNBL is also
easily integrated with many other solutions, different from
other cloud platforms. It guarantees full interoperability
with all existing components, avoiding vendor restrictions.

C. OpenvSwitch

Virtual machines networking was usually configured
using Linux bridges, but it got challenging as they were not
designed originally for virtual networking, and with the
apparition of OpenFlow protocol, more limitations
appeared. Therefore, OvS [4] was developed to resolve
these issues. It is an open source virtual switch working in
two modes, the first, normal mode; it handles by itself the
switching and forwarding functionalities. While the second
one, flow mode, which is the one we used during our setup,
uses the flow table to decide the forwarding rules of
packets. This flow table is mainly managed by the SDN
Controller, and by it, control flows could be installed or
removed to meet network needs with high automation and
abstraction.

D. OpenStack

OPSTK [5] is a Cloud solution, written in Python, giving
large pools of compute, storage and networking. Developed
by NASA, it represents a set of multiple open source

components, with a very active community and partners,
which make it the most used solution to build private Cloud.
The project is dedicated to massive infrastructures, allowing
to plugging needed components, making it very flexible for
use. These components are divided into about ten
categories, respectively: Compute, Storage, Networking,
Data and analytics, Security and compliance, Deployment,
Management, Applications, and Monitoring. In each
category, OPSTK maintains officially the basic
components, such as:

 Nova in Compute: allows users to create, deploy
and manage virtual machines, and supports many
hypervisors like KVM, Hyper-V, VMware ESXi, and
Linux Containers such as LXC,
 Swift and Cinder in Storage
 Neutron in Networking: provides ‘networking as a

service’ capabilities, and Software-Defined Networking
technology.

III. BACKGROUND & RELATED WORK

The only paper found tackling ODL and OPNBL
platforms' integration was [6]. The writers argued in their
description that the project would be based on the use of
ODL as the network manager, specifically developing the
OpenDOVE API [7]. Their purpose was to develop a
framework (i.e. BEACON) enabling a federated cloud
network, using SDN to connect the overlay networks. The
BEACON architecture was intended to be based on open
source solutions, as a start mentioned using ODL with
OPNBL and/or OPSTK. However, at the time of writing
there is no evidence of the BEACON framework integrating
ODL with OPNBL.

There are several papers dealing with integration of ODL
with OPSTK as well as comparison papers between
OPNBL and OPSTK. In comparison works of these two
platforms, run around 2013 [8] then later in 2016 [9],
various aspects were taken into consideration, such as
performance and flexibility. Yet, the two platforms by now
have added and enhanced many services to resolve their
former limitations. Authors in [10] implement their own
cloud architecture on top of OPSTK and OPNBL and
compare their performances. However, they use different
hardware features, which makes their results unsound.
Nevertheless, they find that OPSTK and OPNBL perform
on par, one being better than the other in different scenarios.
Other researchers analyse different SDN controllers and
their integration with OPNSTK. Authors in [11] analysed 4
different SDN controllers and came to the conclusion that
ODL performs the worst when integrated with OPSTK in
terms of average latency but better in terms of TCP/UDP
packet loss. A cloud testbed is proposed in [12] and authors
aim to demonstrate it by taking into account a video
application and measuring VM migration time and VM
downtime, service continuity level and QoE of the VM-to-
VM traffic. However, no results are being shown in the
paper. Finally, traffic evaluation in an OPSTK-ODL
integration [13] has been considered. Here, authors
conclude that periodic synchronous plane traffic scales with
the number of VMs and their respective network interfaces
and VM-related events induce asynchronous traffic, with

76 Telfor Journal, Vol. 12, No. 2, 2020.

the bandwidth also scaling according to the number of VMs
and interfaces. The even distribution leads to the highest
overall traffic volume.

IV. OPENDAYLIGHT AND OPENNEBULA INTEGRATION

During this prior setup, we manage, using OvS, the
interfaces created by OPNBL, and use SDN in its very
known Controller ODL. Table 1 presents the versions of
open source solutions we used. We intended to have the
latest stable releases of each platform. Hence, as an
exception for ODL, we used an anterior version during our
work, i.e. Oxygen. This version is the latest release of ODL
containing the DLUX Applications feature.

TABLE 1: PLATFORMS VERSIONS
 Name Version Release

CLOUD OPNBL 5.10.1 Dec 2019
SDN ODL Oxygen Mar 2018

CONNECTOR OvS 2.9.5 Apr 2019

DLUX provides a Graphical User Interface (GUI) that

helps the ODL user to visually verify its network topology
and connected devices, seeing the whole network
components. Therefore, the figures in the paper are captured
from it as a verification of a successful setup. In addition,
we had to install a set of features in our ODL Controller,
such as the OVSDB and OpenFlow plugins, which are
mandatory to enable the communication between these
solutions.

Fig. 1. Integration setup schema.

As Fig. 1 shows, our setup consists of two Linux
machines. The first is an Ubuntu Desktop containing
OPNBL platform and OvS, located in the lab network, and
the second one is an Ubuntu Server hosting ODL Controller
located in an exterior network. Therefore, the
communication between these components is enabled
throughout the OvS switch.

Hence, an OvS bridge, br0, was created in the lab
network segment with the following commands:

#ovs-vsctl add-br br0
#ovs-vsctl add-port br0 eth0

This latter was configured as the network interface for
OPNBL's compute nodes. Therefore, br0, is a bridge
between the lab's and OPNBL's machines. Moreover, we
created an Alpine [14] virtual machine in our cloud
platform for testing, as can be seen in Fig. 2.

Fig. 2. OPNBL’s User Interface.

We assign this whole network management to our SDN
controller by the following command:

#ovs-vsctl set-controller br0
tcp:<server_ip>:6633

Then we add the next command line to enable all versions
of OpenFlow in OvS, to be used with ODL;

#ovs-ofctl -O OpenFlow13 dump-flows br0

With this, ODL is now able to manage the network of the
given Cloud through OvS.

To verify our setup, we verified if the created VM is
listed in ODL nodes and topology files. In Fig. 3, we can
see that ODL detects the Alpine machine as one of its
network nodes (one-18-0 is the name given by OPNBL to
its nodes in the network, where 18 represents the machine's
creation ID, circled in Fig. 2).

Fig. 3. OPNBL’s node in ODL network.

Furthermore, we can see in Fig. 4 how the Alpine VM is
appearing in the network topology, managed by the OvS
switch (OpenFlow switch), besides the other running
machines in the lab. Which means ODL has successfully
detected this given environment, consequently it can
manage this network, which is basically the Cloud's nodes,
whether by traffic filtering, efficient load balancing, control
data transmission delays, and other unavailable services that
the Cloud platform doesn't provide by itself.

Fig. 4. ODL’s nodes.

Belkadi et al.: OpenDaylight and OpenNebula Integration: Testing Traffic Management 77

V. TRAFFIC MANAGEMENT IN OPENNEBULA USING

OPENDAYLIGHT

In this section, we demonstrate traffic management in
OPNBL using ODL features. A proposed testbed has been
set up to proceed this evaluation. It is composed of three
Alpine machines, deployed in the OPNBL Cloud, this way
we have a clean environment to manage the network flows
using ODL.

A. System Model

For this setup, we use two servers containing ODL and
OPNBL respectively, with the hardware specification
mentioned in Table 2 below. Then followed the same steps
explained in Section IV to configure their integration.

TABLE 2: HARDWARE SPECIFICATION
 ODL OPNBL

OS Ubuntu Server Ubuntu Desktop
Version 18.04 18.04

RAM 8G 8G
CPU 4 cores 4 cores

Storage 30G 100G

As mentioned before, ODL has different built-in plugins
used to communicate with networking devices, like
OVSDB, OpenFlow and NETCONF, to enable the
management switching devices. While the DLUX GUI
allows us to use ODL capabilities.

The ODL controller comes with many features; in this
testbed we make use of the following:

 GUI and visualizing the topology:

feature:install odl-dlux-core odl-dluxapps-
nodes odl-dluxapps-topology odl-dluxapps-
yangui odl-dluxapps-yangvisualizer odl-
dluxapps-yangman

 To enable REST interface requests

feature:install odl-restconf-all

 For OpenFlow and OvS plugins

feature:install odl-l2switch-switch-ui odl-
ovsdb-hwvtepsouthbound-ui odl-ovsdb-
southbound-impl-ui odl-openflowplugin-flow-
services-ui

Furthermore, ODL has two methods for traffic
applications, whether by using the provided REST APIs in
the Controller, or programming their own application
through MD-SAL internal service modules
implementation. In this testbed, we selected the first one.

MD-SAL uses YANG models used by ODL YANG tools
to generate Java-based APIs, which allows simplifying the
development of traffic applications.

In addition to that, REST queries are the most used
operations to fetch ODL managed networks, for this,
YangUI, provided with the DLUX GUI features is used as
the graphical REST client to build and send requests to
ODL during our tests. We use it for network configurations,
with the following main operations:

 GET: to get data from ODL
 POST: to send data to be saved in ODL
 DELETE: to send data to be deleted in ODL

B. Use case Topology

The proposed topology, presented in Fig. 6, includes all
the connected elements, where we deployed three Virtual
Machines as OPNBL’s compute nodes (Fig. 5) running on
Alpine Linux 3.11 operating system, each has 2 vCPUs,
1GB RAM and 5GB of storage, connected to the OvS
network 10.0.2.0/24.

Fig. 5. OPNBL’s testbed nodes.

ODL consists of five components as shown in Fig. 6,
AAA (Authentication, Authorization and Accounting)
enabling automatic identification, MD-SAL (Model-Driven
Service Abstraction Layer) to unify data structures used by
services, besides northbound/southbound APIs, finally
southbound plugins (NETCONF, OVSDB, and OpenFlow).

Fig. 6. Testbed topology schema.

Once the ODL controller is set on the OvS instance,
OpenFlow messages of the connected VMs will be sent
through it to ODL. Which we can view in detail on DLUX
gui (Fig. 7).

Fig. 7. Testbed topology in ODL.

Once the communication is established; ODL adds flows
so the switches connected to it act like a learning switch,
and the first flow table is called table 0.

78 Telfor Journal, Vol. 12, No. 2, 2020.

VI. RESULTS AND DISCUSSION

A. OPNBL Comparison with OPSTK

Table 3 below summarizes the differences between the
two Cloud platforms collected from their documentation
websites.

TABLE 3: OPNBL AND OPSTK PROPERTIES
 OPNBL OPSTK

License Apache 2.0 Apache 2.0
Min

Hardware
Requirements

CPU 2 cores
RAM 2GB
HD 100GB

CPU 4 cores
RAM 4GB

HD 20GB/node
Internal

Organization
single integrated

management
different sub-

projects
Roadmap
definition

managed by one
organization

managed by
vendors

Contributors platform users vendors’ products
Cloud Model Private, Public

(Amazon EC2),
Hybrid,

Federated

Private, Public
(APIs to Amazon

EC2 and S3)

Access Web UI and
Console

Web UI and
Console

Supported
Virtualization

Xen, KVM,
ESXi,VMWare

ESX

Xen, KVM,
ESXi,VMWare

ESXXCP,
QEMU, UML

Auto-scaling
support

Available
besides isolated

clusters
Not available

select Storage
Resources

Available Not available

In addition, we ran an end-user comparison of these two

platforms to evaluate their performance in terms of timing,
which can be crucial in network automation. The process
followed is mainly based on a regular usage such as creating
a Virtual machine, studying how its deployment goes in
terms of time and possible complications.

Fig. 8. OPNBL and OPSTK time metrics.

As Fig. 8 shows, we compared the deployment time, the
time it takes a node to be in a running state, the time to be
halted and finally the cleaning up time of the instance. For

this aim, we used a freshly installed Linux machine, ready
to use OS, with the same specifications on both sides, and
in every step, we recorded the time metrics mentioned.

Possibly, due to its rich Marketplace allowing to clone
ready-to-use images, OPNBL’s deployment time took
about 50 seconds, which is very significant compared to
OPSTK that takes a longer time in the same conditions.
However, in case one wants to upload a custom image and
create the whole template manually from scratch instead of
uploading a ready-to-use version from the marketplace, we
have recorded that the whole process plus the deployment
time will take about 3 minutes. On the other hand, for the
machine to be in a running state, we can observe that
OPSTK took less time, which can be explained by the fact
that some platform services were executed during the
Deployment phase, as OPSTK has a relevant number of
components. We also do not see a significant difference
when it comes to the time it takes to turn off the machines.
Nevertheless, the cleaning up process of instances takes
relatively more time for OPSTK. Taking into consideration
these time measurements, we come to the conclusion that
OPNBL is more rapid, user-friendly and less complicated
to work with.

B. Implemented testbed

We perform traffic tests on a real OPNBL cloud
deployment and evaluate the exchanged messages in the
control plan. With this evaluation, we aim to demonstrate
how traffic control and management could be done in the
cloud using ODL or at least providing guidelines for having
a centralized network controller in a Cloud environment.

Fig. 9. Network topology API.

YangUI provides all available APIs in ODL, but only the
ones installed that will work. The first API we tested is
network topology, it helps to GET all the network
information, such as connected nodes, ports, flow table
statistics, mac and ip addresses, etc. as seen in Fig. 9.

To add or modify a flow through REST API the
controller registers with the MD-SAL for configuration and
data notification, then using RPC implementation,
OpenFlow plugin adds the new flow, this request is sent
using the YangUI as a REST call, with all parameters. Then
MS-DAL generates a notification of the changing data to its
flow programmer service to add the flow in the appropriate
switch.

Belkadi et al.: OpenDaylight and OpenNebula Integration: Testing Traffic Management 79

Fig. 10 shows how we added the flow to our OvS using
YangUI.

Fig. 10. YangUI interface to Add/delete/update Flows.

When a flow is deleted, the OpenFlow switch sends a
notification to the MD-SAL, which registers it to the flow
programmer service. This latter uses the OpenFlow plugin
to get the received data. In YangUI, the DELETE call
follows this logic to delete a network flow.

We verify these changes using the line command:

#ovs-ofctl -O OpenFlow13 dump-flows ovsbr

which helps to show the flow tables in our OvS as seen in
Fig. 11 below:

Fig. 11. Show OvS flows.

VII. CONCLUSION

Network infrastructures affect highly the cloud
networking, as it controls its VMs traffic. With the
emerging concept of SDN, it is becoming possible to
program these actions and reduce the traditional

complexity. There are many Cloud Orchestrators in the
market but none is as modular and easy to integrate as
OPNBL, therefore we were motivated to use this platform
to integrate with our chosen controller: ODL.

During this integration process, we ended up to simply
use ODL to manage OvS through OpenFlow, having it
already connected to OPNBL 's nodes. However, this is just
a start of an unexplored idea. To test it more, we evaluated
traffic management in our proposed topology. This
experiment could be extended to other topologies and
applications as a perspective. Possible challenges include
the impact of SDN controller’s management of only the VM
networks or also the host networks and the horizontal or
vertical scalability.

ACKNOWLEDGMENT

This main author is grateful for the support of Agence
Universitaire de la Francophonie (AUF) via its Eugene
Ionesco scholarship programme.

REFERENCES

[1] O. Belkadi, Y. Laaziz, A. Vulpe and S. Halunga, “An Integration of
OpenDaylight and OpenNebula for Cloud Management
Improvement using SDN,” 2019 27th Telecommunications Forum
(TELFOR), Belgrade, Serbia, 2019, pp. 1-4,

[2] OpenDaylight Controller. [online] Available at:
https://www.opendaylight.org [Accessed 12 May. 2020].

[3] OpenNebula. [online] Available at: https://opennebula.org/
[Accessed 25 Jun. 2019].

[4] OpenvSwitch. [online] Available at: https://www.openvswitch.org/
[Accessed 15 Mar. 2020].

[5] OpenStack Documentation [online] Available at
https://docs.openstack.org [Accessed 25 Apr. 2020].

[6] R. Moreno-Vozmediano, E. Huedo, I. Llorente et al., “BEACON: A
cloud network federation framework,” European Conference on
Service-Orientedand Cloud Computing, Springer, Cham, 2015. pp.
325-337.

[7] OpenDOVE. [online] Available at:
https://wiki.opendaylight.org/view/Open\DOVE: Main
[Accessed 25 Jun. 2019].

[8] X. Wen, G. Gu, Q. Li et al. “Comparison of open-source cloud
management platforms: OpenStack and OpenNebula.” 2012 9th
International Conference on Fuzzy Systems and Knowledge
Discovery, IEEE, 2012, pp. 2457-2461.

[9] A. Vogel, D. Griebler, C. A. F. Maron, C. Schepke, and L. G.
Fernandes, “Private IaaS Clouds: A Comparative Analysis of
OpenNebula, CloudStack and OpenStack,” in 24th Euromicro
International Conference on Parallel, Distributed and Network-
Based Processing (PDP), Greece: IEEE, Febuary 2016, pp. 672–679.

[10] E. Caron, L Toch, and J. Rouzaud-Cornabas, “Comparison on
openstack and opennebula performance to improve multi-cloud
architecture on cosmological simulation use case”, Research Report
RR-8421. INRIA, pp. 23, 2013.\

[11] O. Tkachova, M. J. Salim and A. R. Yahya, “An analysis of SDN-
OpenStack integration,” 2015 Second International Scientific-
Practical Conference Problems of Infocommunications Science and
Technology (PIC S&T), Kharkiv, 2015, pp. 60-62.

[12] C. H. Benet, R. Nasim, K. A. Noghani and A. Kassler,
“OpenStackEmu — A cloud testbed combining network emulation
with OpenStack and SDN,” 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas,
NV, 2017, pp. 566-568.

[13] M. He, A. M. Alba, E. Mansour and W. Kellerer, “Evaluating the
Control and Management Traffic in OpenStack Cloud with SDN,”
2019 IEEE 20th International Conference on High Performance
Switching and Routing (HPSR), Xi'An, China, 2019, pp. 1-6.

[14] Alpine Linux. [online] Available at: https://alpinelinux.org
[Accessed 15 Jun. 2019].

