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Abstract 
The main aim of this paper is to experimentally verify the impact of filter methods on the classification accura-
cy of the radial basis function (RBF) network. The goal of this research is also to present and compare differ-
ent algorithmic approaches for constructing and evaluating systems that learn from experience in order to 
make decisions and predictions, and minimize the expected number or proportion of mistakes. Fifteen real
data sets and three artificial data sets have been used to compare the results of classification accuracy with
the RBF network. We can conclude that it is possible to improve the system performance of inductive learning
rules in different problems, using the filter methods for reducing the dimensionality of data. 
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Introduction 
Machine learning is a field of artificial intelli-
gence that deals with the construction of adaptive 
computing systems that are able to improve their 
performances by using information from expe-
rience. Machine learning is a discipline that stu-
dies the generalization, construction and analysis 
of algorithms that have the ability to generalize. 
However, as much as the applications of machine 
learning are diverse, there are repetitive tasks. 
Therefore, it is possible to talk about the types of 
learning tasks that often occur. One of the most 
common tasks of learning that occurs in practice 
is classification. Classification is an important 
recognition of object types, for example, whether 
a particular tissue represents a malignant tissue or 
not. 

There is a wide range of classification algo-
rithms available to us, each with their own 
strengths and weaknesses. There is, however, no 
learning algorithm which works best with all 
problems of supervised learning. Machine learn-
ing involves a large number of algorithms such as: 
artificial neural networks, genetic algorithms, 

probabilistic models, rule induction, decision 
trees, statistical and pattern recognition methods, 
k-nearest neighbors, Naïve Bayes classifiers and a 
discriminatory analysis. 

In this paper, the radial basis function (RBF) 
network is used. The RBF network offers a num-
ber of advantages, including requiring less formal 
statistical training, the ability to implicitly detect a 
complex nonlinear relationship between depen-
dent and independent variables, the ability to 
detect all possible interactions between predictor 
variables and the availability of multiple algo-
rithms for training. The main objective of this 
paper is to show that it is possible to improve the 
performance of the system for inductive learning 
rules with the RBF network for classification 
problems, using the filter methods and data di-
mensionality reduction techniques. 

Various aspects of the feature selection have 
been studied. A search is the key topic in the 
study of a feature selection (Doak, 1992), such as 
search starting points, search directions, and 
search strategies. Another important aspect is how 
to measure the goodness of a feature subset 
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(Doak, 1992). Algorithms for a feature selection 
may be divided into filters (Fayyad & Irani, 1992; 
Liu & Setiono, 1996), wrappers and embedded 
approaches (Das, 2001). Filters methods evaluate 
the quality of selected features, independently 
from the classification algorithm; wrapper me-
thods require the application of a classifier to eva-
luate this quality, whereas embedded methods 
perform a feature selection during the learning of 
optimal parameters. According to class informa-
tion availability in data, there are supervised fea-
ture selection approaches as well as unsupervised 
feature selection approaches. 

The main aim of this paper is to experimental-
ly verify the impact of filter methods on the clas-
sification accuracy of the RBF network. For this 
purpose, the paper is structured in the following 
way. In the first part of the paper, a model of the 
RBF network is presented; in the second part, a 
description of data sets is given. The third part of 
the paper describes the methodology of experi-
mental research. In the fourth part, we will try to 
solve a problem by using the RBF network as a 
supervised learning algorithm. To achieve greater 
forecasting accuracy and make more appropriate 
decision, the filter method for reducing the di-
mensionality of data is used. Also, in the fourth 
section, the results of an experimental study that 
have been collected during the survey are pre-
sented. In the last part of the paper, the obtained 
results are discussed and directions for further 
research are given. 

 
1. The representation of the RBF 
network model 
The classification of neural networks has proved 
to be a very good one only for more serious clas-
sification problems, where it is difficult or im-
possible to use the classical technique. Besides, 
neural networks are well-suited to work in condi-
tions of noise in data. From the point of view of a 
layered mode of the organization of neurons in a 
network, the network can be classified into a sin-
gle-and a multi-layered one. The first layer is 
called the input layer, the last is the output layer; 
all other layers are called hidden layers. As a rule, 
each layer receives inputs from the previous layer 
and sends their outputs to the next layer. 

From a structural point of view, depending on 
the model used to build neural networks, neural 
networks can be divided into static and dynamic 
ones. In this paper, a static neural network is used. 
The main characteristic of static neural networks 
is that neurons are organized beforehand, so that 

neurons are connected in a way with no form of 
feedback. These networks cannot contain dynamic 
members, making them structurally stable. Since 
there are no dynamic members, the static response 
of the neural network depends only on the current 
state and the input values of the network parame-
ters. Static neural networks are commonly used in 
the identification process, process management, 
and signal processing and pattern recognition. The 
most common types of static neural networks are 
the MLP and the RBF neural networks. The pseu-
do-code for RBF training (Basir, 2015) is shown 
in Figure1. 

 
trainRBF (in, out, width, MaxError, data) {  
hidden = 0;  
net = initRBFNetwork (in, out, hidden); // init network nodes 
do {  
 //find the data vector that produces the largest error 
 i = findMaxNetworkError (data, net); / / i = indexof vector 
 / / add neuron to the RBF layer at same point as the above 
       data vector 
 addRBFNeuron (net, width, data (i)); / / data (i) = center 
       point 
 / / findthe overallnetworkerror 
 NetError = trainOutputWeights (net, data);  
    } while (NetError>MaxError);  
} 

 
Figure 1   The pseudo-code for RBF training 

Source: Basir, 2015 

 
2. The description of the data sets 
Fifteen real data sets and three artificial data sets 
have been used for tests, taken from the Universi-
ty of California, Irvine (UCI) repository of ma-
chine learning databases (Frank, Asuncion, 2010). 
We used these data sets to compare the results of 
classification accuracy with the RBF network. 
These data sets are: breast cancer (bc),credit ap-
proval (ca), Statlog German credit data (cg), car-
diography (ct), hepatitis (he), liver (li), lung can-
cer (lc), mammographic mass (mm), monk prob-
lems (monk1 (m1), monk2 (m2), monk3 (m3)), 
mushrooms (mu), Parkinson (pa), Pima Indians 
diabetes (pi), image segmentation (se), soybean 
(so), Stat log heart (sh) and congressional voting 
records (vo). Table 1accounts for the details for 
the benchmark data sets that have been used from 
the UCI repository of machine learning databases. 

There are 18 data sets, out of which the 15 da-
ta sets are real, which means that they are ob-
tained by collecting data from real, existing sys-
tems. The other three remaining data sets m1, m2 
and m3 are artificial data sets, which means that 
the data have not been collected from the real sys-
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tem, but rather created by the researchers for re-
search purposes. To obtain the reference data, real 
and artificial data sets have been used to prove the 
stated hypothesis. 

Five data sets have more than 20 attributes, lc–
56, so–35, pa and ct–23 and mu–22 attributes. The 
following data sets have the smallest number of 
attributes: ma–5, li, m1, m2 and m3– 6 attributes. 
We conclude that the observed data sets are data 
sets with a very large number of attributes, as well 
as those sets that have a small number of 
attributes, which is good from the standpoint of 
research. The observed data sets are balanced be-
cause there are data sets containing only categori-
cal or only numerical attributes, as well as data 
sets containing both categorical and numerical 
attributes. 

 
Table 1   Display data sets. “CV” means cross-validation 
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bc 9 9 0 2 286 CV 70.30 

ca 15 9 6 2 690 CV 55.50 

cg 20 13 7 2 1000 CV 50.10 

ct 23 0 23 3 2126 CV 95.00 

he 19 13 6 2 155 CV 78.10 

li 6 0 6 2 345 CV 58.10 

lc 56 0 56 3 32 CV 26.80 

ma 5 0 5 2 961 CV 84.00 

m1 6 6 0 2 124 308 50.00 

m2 6 6 0 2 169 263 67.13 

m3 6 6 0 2 122 310 52.78 

mu 22 22 0 2 8124 CV 51.80 

pa 23 0 23 2 195 CV 76.00 

pi 8 0 8 2 768 CV 65.10 

se 19 0 19 7 2310 CV 14.30 

so 35 35 0 19 683 CV 13.47 

sh 13 3 10 2 270 CV 55.00 

vo 16 16 0 2 435 CV 61.40 

Source: Author 

 
Among the analyzed data sets, only two data 

sets have a larger number of classes, se– 7 classes, 
and so–19 classes. The reason for this is the fact 
that in the majority of the problems of the classifi-
cation, the existing instances are sorted into two, 
possibly three classes, and rarely into a larger 
number of classes. 

 

Table 1 shows that the number of the instances 
provided for training varies from a small number 
of the collected instances, which is the case with 
lc–only 32 instances, to the events that have a 
much bigger number of the instances, for example 
mu–8124 instances for training. In all real data-
sets, the10-fold cross-validation (CV) is used. The 
researchers have created the artificial data sets 
m1, m2 and m3, separating these data into two 
groups: those that will serve to train and those that 
will serve for testing, whereby a small number of 
data are used for training (on average, around 
25%). The last column of the table shows the ref-
erence accuracy for the real and the artificial data 
sets. 

 
3. The methodology of the 
experimental research 
The experiment was performed by using the 
WEKA (Waikato Environment for Knowledge 
Analysis) tools for data preparation and research, 
developed at the University of Waikato in New 
Zealand. When searching for the model that best 
approximates the target function, it is necessary to 
provide measures of quality models and learning. 
In our experimental studies, different measures 
can be used, depending on the problem; classifica-
tion accuracy, as a measure of the quality of the 
model, has been used. 

To obtain a more reliable evaluation of learned 
knowledge, cross-validation has been used, where 
there is a full data set split into n approximately 
equal subsets. In doing so, in each iteration, there 
is an n-1 training subset; after the training, the 
quality of learned knowledge is assessed in the 
last remaining subset. The procedure described 
above is repeated for all other subsets extracted as 
the final quality score, obtained by taking the av-
erage score for each of the subsets. In our experi-
mental study, the taken value of n is 10. Cross-
validation has been used in our experimental 
study, because the procedure leads to a stable 
quality evaluation. The advantage of this method 
is that each of the n steps of cross validation using 
a large amount of data in their training and all 
available instances at one time have been used for 
the purpose of testing. 

In the experimental research, filter methods 
have been used in order to reduce the dimensio-
nality of the data. In our experiment, a solution 
with the number of attributes that will be used 
further in the study has been selected, which gives 
the highest classification accuracy. The results 
provide accuracy obtained as an average often 
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tion in the standard deviation is demonstrated by 
the RF method, so that for particular data sets, the 
standard deviation is less, but in some cases the 
standard deviation is greater. 

The time required for training data with the 
RBF algorithm that uses the original and the re-
duced data sets is accounted for in Table 4. The 
time required for training data with the RBF clas-
sifier for all original data sets is below 1.00 
seconds, except for the two sets of data se and so, 
where the required time is significantly longer. 
The time required for training data with some of 
the methods of filtering is longer, while for some 
it is less than for the original data sets. In all data 
sets, at least one method of filtering provides the 
same or better results for the time required for 
training compared to the original data sets. 

 
Table 4   The time required for training data (in seconds) 
with the RBF algorithm with the original and the reduced 

data sets 
 

 
Source: Author 

 
The applied method of filtering IG in two data 

sets shows worse results for the time required for 
training data; and for four data sets, the results are 
statistically better. The applied method of filtering 
GR in none data sets shows worse results for the 
time required for training data; and for three data 
sets, the results are statistically better. 

The applied method of filtering SU in only one 
data set shows worse results for the time required 
for training data; in three data sets, the results are 
statistically better. The RF filtering method in all 
data sets shows the same or worse results for the 

time required for training data, and in almost all 
datasets, the results are statistically worse. The RF 
filtering method in all data sets shows the same 
results as or worse results than the RBF algorithm 
on the original data set for the time required for 
training data, and in almost all data sets, the re-
sults are statistically worse. 

The OR filtering method in almost all data sets 
shows worse results than the RBF algorithm on 
the original data set, and in most cases, these re-
sults are statistically worse. The applied method 
of filtering CS in only one data set shows worse 
results than the RBF algorithm on the original 
dataset; in three data sets, the results are statisti-
cally better. Using the RBF classifier, the IG fil-
tering method in four cases has led to statistically 
better results for the time required for training on 
the observed data sets, which is a better outcome 
compared with the other filter methods. 

The standard deviation for the time required 
for training data with the RBF algorithm for the 
original and the reduced data sets with the filter 
methods is shown in Table 5. The Table accounts 
for the fact that the standard deviations generally 
do not differ a lot between the standard algorithm 
and the algorithms that use a selection of 
attributes, except for the data set so, where, with 
the help of some methods, this value is signifi-
cantly higher or significantly lower than in the 
original data set. The maximum deviation of the 
standard deviation shows the method SU for the 
so data set. 
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Table 5   The standard deviation for the time required for 
training data (in seconds) with the RBF algorithm for the 

original and the reduced data sets 
 

 
Source: Author 

 

Discussion of the results and future     
research 
According to the obtained results, a conclusion 
can be drawn that it is possible to improve the 
system performance of inductive learning rules in 
different problems, using the filter methods for 
reducing the dimensionality of data. To prove the 
hypothesis, the filter methods for reducing the 
dimensionality of data have been implemented 
and empirically tested. The experimental results 
reveal that the methods effectively applied contri-
bute to the detection and elimination of irrelevant, 
redundant data and noise in data. In many cases, 
the filter methods select relevant attributes and 
contribute to greater classification accuracy. In the 
experimental study, the following has been dem-
onstrated: 

▪ the application of the previous selection of 
attributes by using the filtering methods 
with the RBF algorithm for classification 
leads to a reduction in the negative effects 
of the high dimensionality of data, 

▪ the previous selection of an attribute by the 
method of filtering in some cases leads to a 
significant reduction in time to build a 
model, 

▪ applying the method of filtering in the sys-
tem for inductive learning, it is possible in 
some cases to significantly improve the ac-
curacy of the existing learning methods. 

 
In a further research, it would be interesting to 

apply other techniques to solve the problem of the 
dimensionality reduction in data, such as wrapper 
methods and the extraction of attributes, and ana-
lyze and compare effects of their implementation. 
These techniques could also improve the perfor-
mance of classification learning algorithms. SM 
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