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the mathematical background and some examples of structures 
which under particular conditions are flexible or almost flexible 
and otherwise rigid.
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INTRODUCTION

A framework or a polyhedron will be called “rigid” when the edge lengths 
determine its planar or spatial shape uniquely; under the term “shape” we mean 
its spatial form – apart from movements in space.

More generally and under inclusion of smooth or piecewise linear surfaces, 
a structure is called rigid when its intrinsic metric defines its spatial shape 
uniquely. In this sense, the intrinsic metric of a polyhedron is defined by its 
net (unfolding), i.e., the coplanar set of faces with identified pairs of edges 
originating from the same edge of the spatial form. After cutting out this net 
from paper or cardboard, a paper- or cardboard-model of this polyhedron 
can be built in the usual way. Does such a net really define the shape of a 
polyhedron uniquely?

Think of a cube where one face is replaced by a four-sided pyramid with a 
small height. Then,  obviously two different polyhedra can be built, one convex 
form with the pyramid erected towards outside, the other with the apex of the 
pyramid inside the cube (Fig. 1). So, there are two polyhedra, two realizations, 
stemming from the same net, i.e., with the same intrinsic metric. In the convex 
case the internal dihedral angles along the edges of the pyramid are < 180◦, in 
the other case they are > 180◦. 

If the height is sufficiently small, distort the convex polyhedron can be distorted 
by applying slight force and change to the concave form. In this case we speak 
of “snapping” polyhedra. Both realizations are “locally rigid”, i.e., there is no 
other realization of the same intrinsic metric sufficiently close to the one under 
consideration. “Globally rigid” is a structure for which the intrinsic metric 
defines its spatial shape uniquely, apart from displacements as a rigid body. 
Each three-sided pyramid (tetrahedron) is globally rigid.

Figure 1 Two realizations of the same net
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The first important result in the theory of rigidity claims that every convex 
polyhedron is globally rigid. This is due to A. L. Cauchy, 1813 [3].

A real-world model of a snapping polyhedron might look like a flexible one, 
but theoretically it is not flexible. The model admits small bendings of the 
faces and has some clearances at the hinges along the edges, and this causes 
the seeming flexibility which in any case is somehow limited within a certain 
neighborhood. A famous example is described in W. Wunderlich’s article [18] 
on a polyhedron exhibited at the science exposition “Phänomena” in 1984 in 
Zürich. At that time it was falsely stated that this polyhedron is flexible, but 
it was only snapping between two different snap poses and one spatial shape.

Let us still think of a polyhedron made from cardbord with planar faces, but 
with variable dihedral angles between any two faces sharing a common edge. 
A polyhedron is called “continuously flexible”, when the dihedral angles of the 
polyhedron can vary continuously while the intrinsic metric remains invariant. 
Sometimes, this is called a selfmotion of the structure. R. Bricard classified 
in 1897 [2] all flexible octahedra, i.e. all flexible four-sided double-pyramids. 
However, all these polyhedra have self-intersections. Flexible polyhedral 
structures can be extracted from Bricard’s octahedra only when either some 
faces are omitted [19] or when the polyhedron with 8 triangular faces is seen 
as a framework with 12 edges.

The first continuously flexible polyhedron without self-intersections was 
detected in 1977 by R. Connelly [4]. A “flexing sphere” with 9 vertices only was 
found in 1978 by K. Steffen [13] as a combination of two flexible octahedra.

At the first glance, it might be surprising that even for a regular octahedron 
there exists a continuously flexible realization with the same intrinsic metric. 

Figure 2 The regular octahedron and its re-assembled and continuously flexible versions
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The structure can be re-assembled by putting one four-sided pyramid into the 
other. This gives a twofold covered quadratic pyramid without basis, which 
of course is flexible (Fig. 2). This is no contradiction with Cauchy’s result, 
because there we have the restriction to convex spatial shapes only, and the 
regular octahedron is indeed locally rigid. 

It turns out that the computation of the spatial from of any four-sided double-
pyramid, i.e., of any general octahedron with given unfolding is an algebraic 
problem of degree 8. Hence, up to 8 different realizations are possible. Apart 
from particular cases, each of these realizations is locally rigid.

The question whether the edge lengths of a polyhedral structure or framework 
determine its planar or spatial shape uniquely, is also important for many 
engineering applications, e.g., for mechanical or constructional engineers, for 
biologists in protein modeling or for the analysis of isomers in chemistry.

In the following text some flexible examples have been presented, and it has 
been emphasized that there is something between “continuously flexibility” and 
“rigidity”, the “infinitesimal flexibility” which can also be seen as a limiting 
case of snapping structures after the two different realizations converge. But 
first of all the terminology and the mathematical background will be clarified.

DEFINITION OF RIGIDITY AND FLEXIBILITY

In the following definitions polyhedra is not seen not as piecewise linear 
surfaces, but as frameworks. This means one should concentrate on its edges 
only. If there are faces with more than three vertices, it must be replaced by 
some face-to-face tetrahedra erected over this face in order to keep the original 
face planar. Finally, it should be noted that technical problems like stiffness of 
edges and clearances along the hinges are not to be of a concern. The focus is 
just on  geometry.

Definition 1. 
A framework Ƒ in Rd, d = 2, 3,..., consists of a set V = {x1, ..., xv} of vertices 
and a set E of edges, i.e., E = {(i, j) | 0 < i < j ≤ v}. The length of the edge xixj 
of Ƒ is denoted by lij, and the functions 

fij(y, z) := ||y − z||2 − l2
ij for y, z Є Rd. 			   (1)

are defined.
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The framework Ƒ is called continuously flexible, if there is a continuous family 
Ƒt of frameworks with vertices x1(t), ..., xd(t) for 0 ≤ t ≤ 1 with Ƒ0 = Ƒ and fij 
(xi(t), xj(t)) = 0 for all (i, j) Є E, provided there are at least two vertices xk, xl 
which do not keep their distance constant.

The family Ƒt, 0 ≤ t ≤ 1 is called a flection or self-motion of Ƒ; each single Ƒt 
for a fixed t is called a pose of this flection.

It is said that, the edge set E defines the combinatorial structure of Ƒ. By the 
request that at least one distance between vertices does not remain constant 
during the flection, trivial flections are excluded, i.e., pure motions of the 
framework as a rigid body, expressible in matrix form by

xi(t) = a(t) + A(t)xi for each i Є {1, ..., v}

with a(t) Є Rd and an orthogonal (d × d)-matrix a(t), i.e., AT = A−1.

The conditions for keeping the lengths of edges constant, are of algebraic 
nature. Hence, in the case of a continuously flexible Ƒ the flection as a function 
of t is not only continuous but analytic in t. Therefore each xi(t) can be expanded 
into Taylor series. This is the basis for the following definition.

Definition 2.
A framework Ƒ in Rd is called infinitesimally flexible or - more precisely - 
infinitesimally flexible of order n, n ≥ 1, if for each i Є {1, ..., v} there is a 
polynomial function

zi(t) = xi + xi,1t + ... + xi,ntn , xi,j Є Rd for j Є {1, ..., v} 	 (2)

such that the substitution of zi(t) in the distance functions fij gives functions 
with a zero at t = 0 of multiplicity > n, i.e., by using the Landau symbol

fij (zi(t), zj(t)) = o(tn) for all (i, j) Є E, 			   (3)

provided, there is a pair (xk, xl) of vertices with || zk − zl ||
2 − || xk − xl ||

2 ≠ o(tn).
Z(t) := (z1(t), ..., zv(t)) is called an infinitesimal flection of Ƒ of order n.

The first derivative xi,1 of zi(t) at t = 0 is called velocity vector. The second 
derivative xi,2 in (2) is called acceleration vector of vertex xi. 

An infinitesimal flection would be called trivial, if the polynomial functions 
zi(t) originate from an infinitesimal motion of Ƒ as a rigid body, i.e., by an 
assignment
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xi,1 = s + S xi with s Є R[t]d, S Є R[t]d×d and ST = −S. 	 (4)
This means, the components of s and the entries in S are polynomials in t and 
matrix S is skew-symmetric.

Remarks: 
1.	 In [14] L.S. Velimirović and S.R. Rančić treat the analogue of first-

order flexibility for smooth surfaces. In the flexible case one speaks of 
infinitesimal bendings of a surface.

2.	 A framework which admits only trivial flections, is called first order 
rigid order infinitesimally rigid.

Each continuously flexible framework admits a nontrivial analytic flection 
and is therefore also infinitesimally flexible of any order. Due to the algebraic 
character of Eq. (1), for each combinatorial type of framework there is a 
sufficiently high n Є N such that infinitesimal flexibility of an order ≥ n implies 
continuous flexibility. This was proved by V. Alexandrov in [1]. On the other 
hand, T. Tarnai presented in frameworks which are infinitesimally flexible of 
order 2m − 1 for any m.

The conditions for a framework of given combinatorial structure to be 
infinitesimally flexible of given order can be obtained by substituting the 
polynomial functions zi(t) in the distance functions fij in (1) and comparing 
the coefficients of all powers of t up to n. This results in a series of systems of 
linear equations. So, checking whether a given framework is rigid or higher-
order infinitesimally flexible is reduced to inspecting the solvability of these 
systems of linear equations step by step.

The converse, i.e., finding the geometric meaning of these conditions, is not 
as straight forward as one might expect. The system for first order flexibility 
is homogeneous. Therefore the existence of a nontrivial first-order flection is 
equivalent to a sufficiently high ranked efficiency of the coefficient matrix, 
the socalled rigidity matrix of Ƒ. The solution of the first system defines the 
values on the right-hand side in the inhomogeneous system for second-order 
flexibility. When this system is solvable, its solution defines the right-hand 
side values for the third system, and so on.  This more or less technical method 
has been skipped and the focus in the coming section is on the underlying 
geometric conditions.

It should be mentioned, that there are several applications of first-order 
infinitesimal flexibility. In robotics, such infinitesimally flexible poses are 
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called singular and usually avoided since at least one degree of freedom is 
missing there and the control of the robot close to singular poses becomes 
problematic. When in surveying the relative location of points is determined by 
measuring some of the mutual distances and when the underlying framework is 
infinitesimally flexible, then this pose is called critical and results in numerical 
instability.

INFINITESIMAL FLEXIBILITY VS. SNAPPING FRAMEWORKS

First order flexibility

The condition (3) for first-order infinitesimal flexibility means that for each (i, 
j) Є E in the polynomial fij (zi(t), zj(t)) the coefficient of t must vanish. This is 
equivalent to

(xi − xj) × (xi,1 − xj,1) = 0 				    (5)

This vanishing scalar product means that for each edge xixj of Ƒ the components 
of the velocity vectors of xi and xj in direction of the edge are equal. This is 
called the Projection Theorem (see Fig. 3). To summarize: 

Theorem 1. 
A framework Ƒ is infinitesimally flexible if to each vertex xi a velocity vector 
xi,1 can be assigned of a type that for all edges of Ƒ the Projection Theorem (5) 
is fulfilled. 

The first example in Fig. 4 shows a planar bipartite framework. Bipartite 
means that the vertices can be subdivided into two sets, and each edge connects 
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Figure 3 The Projection Theorem (Theorem 1) Figure 4 A planar bipartite framework is infinitesimally flexible 
if and only if the vertices are located on a 2nd-order curve
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points from different sets. In our case there are six vertices xi and yj, i, j Є {1, 
2, 3}, and 9 edges xiyj. It has been well known at least for one century that this 
framework is infinitesimally flexible if and only if the vertices are placed on a 
curve of degree 2, i.e., either on a conic c or on two lines. This is still true when 
more than 6 points xi and yj are specified on the same conic.

The analogous result is valid for any dimension d when the conic is replaced by 
any quadric in Rd. The following short proof owing to W. Whiteley [16] reveals 
that this condition is sufficient and that the velocity vectors can be chosen 
perpendicular to the quadric, as shown for d = 2 in Fig. 4. 

Proof:
The coordinate vectors are written in columns and the equation of the quadric 
is set up in matrix form by xTQx = k with a symmetric (d × d)-matrix Q. Since 
xi and yj are located on the quadric, we have xi

TQxi = yj
TQyj = k. Now the 

velocity vectors are specified by xi,1 = Qxi and yi,1 = −Qyi, and for the edge xiyj 
it is verified that the Projection Theorem has been fulfilled. For this purpose the 
scalar product is written in matrix form and the following obtained

(xi − yj)
T(xi,1 − yj,1) = (xi − yj)

T(Qxi + Qyj)
= xi

T Qxi − yj
T Qxi + xi

T Qyj − yj
T Qyj = 0,

since xi and yj fulfill the quadric’s equation and the real number xi
T Qyj equals 

its transpose yj
T QTxi = yj

T Qxi.

On the other hand, (xi
T Q)x = 0 is the equation of the tangent plane of the 

quadric at point xi, and hence the gradient of this plane, the vector xi,1= Qxi is 
perpendicular to the quadric. The same holds true for point yj (Fig. 4). 
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Figure 5 Another infinitesimally flexible framework with 6 vertices and 9 edges
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The assignment of velocity vectors xi,1 to the vertices xi of an infinitesimally 
flexible framework Ƒ is not unique. Apart from a scaling, i.e., replacement of 
xi,1 by αxi,1 for any fixed α Є R \{0}, an instantaneous motion can additionally 
be imposed according to (4). This means that to each xi,1 the vector s + Sxi with 
ST = −S can be added without disturbing Eq. (5) since (xi − xj)

TS(xi − xj) is the 
null form. 

The next example displayed in Fig. 5 is again a planar framework with 6 
vertices and 9 edges, but not bipartite. It is a pinned framework, i.e., vertices 
indicated by the black-and-white points in Fig. 5 are fixed. This framework 
is infinitesimally flexible if and only if the three lines xiyi have one point in 
common or are parallel.

In the examples presented up to now (Figs. 4 and 5) the geometric characterization 
of infinitesimally flexible frameworks is of projective nature. If a collineation 
is applied on the flexible framework, it still remains infinitesimally flexible. 
This is surprising since rigidity is based on metric properties and they are 
changed under collinear transformations. However, the projective invariance 
of infinitesimal flexibility is a classical result and probably first proved in 1920 
by H. Liebmann (1920) [7]. Alternative proofs can be found in [15] and [5]. 

Only first-order infinitesimal flexibility is projectively invariant. This follows 
from the examples of higher-order flexible frameworks presented in [8] and [9].

Infinitesimal flexibility can be seen as the limiting case where two realizations 
of a framework coincide. This was the way how W. Wunderlich studied 
infinitesimal flexibility. The next theorem reveals that there is a direct connection 
between snapping frameworks and infinitesimally flexible frameworks of 
the same combinatorial type. W. Whiteley [17] calls this correspondence 
“averaging”; in I. Izmestiev’s paper [5] it is called Pogorelov map.

Theorem 2.
Let y1, ..., yv and y′1, ..., y′v be the vertices of two incongruent realizations of 
a framework Ƒ with the same intrinsic metric, i.e., with the same edge lengths 
lij. Then the midpoints xi = 1/2 (yi + y′i) of corresponding vertices make a 
framework Ƒ of the same combinatorial structure which is infinitesimally 
flexible with velocity vectors xi,1 = 1/2 (yi−y′i).

Conversely, any infinitesimally flexible framework Ƒ with vertices x1, ..., xv 
and velocity vectors x1,1, ..., xv,1 gives rise to two incongruent realizations of a 
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framework Ƒ of the same combinatorial type, namely that with vertices yi = xi 
+ xi,1 and y′i = xi − xi,1, respectively.

Proof:
The proof is unexpectedly short. For each edge of Ƒ, i.e., for each (i, j) Є E the 
equations || yi − yj || = || y′i − y′j || can be rewritten as

(yi − yj)
2 − (y′i − y′j)

2 = 0

which is equivalent to

(yi − yj + y′i − y′j) × (yi − yj − y′i + y′j) = 0
or 

((yi + y′i) − (yj + y′j)) × ((yi − y′i) − (yj − y′j)) = 0.

This is just the statement of the Projection Theorem (5) (xi −xj) × (xi,1 − xj,1) =0 
because of 2xi = yi + y′i and 2xi,1 = yi − y′i.

For any given infinitesimally flexible framework Ƒ the appointed velocity 
vectors xi,1 can be replaced simultaneously by αxi,1 for any α Є R. The smaller 
the absolute value of α, the closer the two obtained snapping poses are. The 
given flexible framework Ƒ is the limit for α → 0 . 

Figure 6 shows on the left-hand side two realizations derived from the 
infinitesimally flexible framework in Fig. 5, left. On the right-hand side it is 
illustrated how from the two realizations by the principle of “averaging” the 
infinitesimally flexible Ƒ is obtained. It can be proved that displacements of Ƒ′ 
relative to Ƒ do not change the shape of Ƒ.
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Figure 6 Left: A snapping framework obtained from that in Fig. 5. Right: An infinitesimal framework obtained by the principle of “averaging”
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It could be proceeded in the same way with the infinitesimally bipartite 
framework obtained from Fig. 4. According to [10] it is known, that after a 
suitable displacement of one of the two realizations the vertices of any snapping 
bipartite framework are located on two confocal conics (quadrics). Then the 
snapping is the result of interchanging the two conics.

Flexible polygonal structures

The conclusion is with polyhedral structures which play a role in paper folding 
(origami) but also in new architectural surface design as quad meshes. The 
starting point is with a Kokotsakis mesh (German: Vierflach), an object named 
after A. Kokotsakis [6]. A quadrangular Kokotsakis mesh is the compound of 
3×3 planar quadrangles. In Fig. 7, left, the scheme of a quadrangular Kokotsakis 
mesh is shown with a central face f0 and a belt of 8 quadrangles around it. On 
the right hand side a flection of a continuously flexible version is displayed.

Though a complete classification of all flexible cases is still an open problem, 
some particular conditions are known which give rise to continuously flexible 
meshes (compare, e.g., [12]). 

The start will be with the infinitesimally flexible case. The geometric 
characterization of these meshes is already given in [6] (see Fig. 4). Kokotsakis’ 
arguments have been followed which are based on standard results from 
Kinematics. For any two faces fi, fj sharing an edge, the edge is the axis ij of the 
relative motion. According to the Three-Pole-Theorem for any three faces fi, 
fj, fk with rotations as pairwise relative motions the three axes ij, ik and jk must 

Figure 7 
Up: Scheme of a Kokotsakis mesh. 
Down: Pose of a continuously flexible 
Kokotsakis mesh with central face f0; 
dashes indicate valley folds.

Figure 8 
Infinitesimally flexible Kokotsakis mesh
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Figure 9 Kokotsakis’ flexible tessellation Figure 10 For each flection the 
vertices are located on cylinders 
of rotation
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be coplanar and share a point. This implies, e.g., that at the Kokotsakis mesh 
(see Fig. 8) the axis 12 of the relative motion between f1 and f2 is the line of 
intersection between the planes spanned by f5 and f0. The lines of intersection 
with the plane are called of f0 traces. In Fig. 8 the mesh is cut by a plane 
parallel to that of f0. 

Theorem 3.
A Kokotsakis mesh is infinitesimally flexible if and only if the following three 
points are collinear, the points of intersection between the traces of (f1, f3), (f5, 
f6) and (f7, f8). This is equivalent to the statement that the points of intersection 
between the traces of (f2, f4), (f6, f7) and (f8, f5) are aligned.

By the way, the equivalence between the two “collinearities” is just a 
consequence of Desargues’ theorem.

According to Theorem 2 each infinitesimally flexible case gives rise to pairs of 
snapping Kokotsakis meshes. There are even examples where one realization 
is flat. 

An interesting continuously flexible quad mesh, a polyhedral compound of 
m×n planar quadrangles, dates also back to Kokotsakis [6]. One starts with 
a planar tessellation by congruent non-convex quadrangles (Fig. 9) with the 
property, that any two quadrangles sharing a side can be interchanged by a 
180◦-rotation about the midpoint C of the common side. These two adjacent 
quadrangles form a centrally symmetric hexagon, and the tessellation can also 
be generated by translations of this hexagon.
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Figure 11 Flection of the Kokotsakis tesselation of the first kind Figure 12 Flection of the Kokotsakis tesselation of second kind
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Any connected portion of this tessellation is continuously flexible. As explained 
in [11], the flexibility can be proved by starting with a four-sided pyramid of 
quadrangles sharing a vertex and by continuing this flection step by step to the 
complete tesselation.
It turns out that starting from the flat initial pose, there are two differentiable 
types of bendings of this piecewise linear surface. In each non-flat realization 
all vertices are located on a cylinder of revolution (see Fig. 10). Hence the 
polygonal structure of each realization gives a discrete approximation of this 
cylinder.

Figures 11 and 12 show snapshots of these two bendings. The edges of the 
planar tessellation can be combined to two folds. And for each fold every 
second vertex lies on the same helical line. When the basic quadrangle is a 
trapezoid, then the folds of one family become aligned, and one family of 
bendings is that of a prism and therefore trivial. 
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