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ABSTRACT 

A systematic analytical procedure for simultaneous estimation of the fundamental frequency, the amplitudes and phases of harmonic 

waves was proposed in this paper, which enabled fast and precise estimation with a small numerical error. Individual sinusoidal 

components have been extracted from the input complex-harmonic signal with finite-impulse response (FIR) comb filters. The proposed 

algorithm is based on the application of partial derivate of the processed and filtered input signal, after which it is performed weighted 

estimation procedure to better estimate the size of the values of the fundamental frequency, amplitude and the multi-sinusoid signal 

phase. The designed algorithm can be used in the signal reconstruction and estimation procedures, spectral processing, in procedures 

for the identification of the system that is observed, as well as other important signal processing areas. Through the simulation check, 

the effectiveness of the proposed algorithm was assessed, which confirmed its high performance. 

Keywords: complex-harmonic signal, nominal frequency, Fourier coefficient estimation, signal parameters estimation, finite-

impulse-response (FIR) comb filter. 

REZIME 

U radu je predložena potpuno nova procedura za esimaciju kako frekvencije, tako i amplitude i faze harmonijskih komponenti 

energetskog signala koji je predmet procesiranja, kroz sistematski i analitički pristup. Postignuto je smanjenje kompleksnosti u 

procesiranju kroz potpuno nove svedene analitičke izraze, čime se omogućuje brza estimacija uz malu numeričku grešku. Ulazni 

naponski/strujni signal se kondicionira preko filtra koji potiskuje eventualno prisutne komponente koje su posledica spektralnog 

curenja (anti-aliasing filter) i dodaje mu se šumna (dithering) komponeta. Tako obrađen signal se uvodi u jedinicu za analogno-

digitalnu konverziju koja se realizuje sa frekvencijom odmeravanja koja je višestruko veća od frekvencije definisane Nikvistovim 

kriterijumom (oversampling). Pojedinačne sinusne komponente su izdvojene uz upotrebu filtara sa konačnim impulsnim odzivom (FIR). 

Nakon ovako izvršene separacije pojedinačnih komponenti iz ulaznog složeno-harmonijskog signal, koji je opisan Furijeovim redom 

konačne dužine, prema predloženom konceptu obrade vrši se parcijalna derivacija procesiranih sinusnih komponenti. Posebno 

dizajniranim blokovima za diferenciranje realizuje se određivanje prvog i drugog izvoda svake od harmonijskih komponenti, u potpuno 

proizvoljnim vremenskim trenucima, čime se u potpunosti prati dinamika prostoperiodičnih komponenti ulaznog energetskog signala. 

Dodatnom estimacionom procedurom, zasnovanom na težinskim koeficijentima, a u cilju smanjenja neminovno prisutne greške u lancu 

obrade, realizuje se obračun frekvencije, amplitude i faze komponenti složeno-harmonijskog signala. Predloženi algoritam se može 

upotrebiti u procesu signalne rekonstrukcije, estimacije spektra, sistemskoj identifikaciji, kao i u drugim bitnim problemima vezanim 

za procesiranje signala. Rezultati simulacije su potvrdili efektivnost predloženog algoritma, kao i mogućnost njegove primene u on-

line preračunavanjima. 

Ključne reči: frekvencijski ograničen signal, noseća frekvencija i estimacija Furijeovih koeficijenata, signalna rekonstrukcija, filter 

sa konačnim impulsnim odzivom-(FIR) filter 
 

INTRODUCTION 

The mass application of electronics and systems based on the 

usage of semiconductors in the last few decades has led to an 

increase in the number of nonlinear loads in the power network 

(Alhaj et al., 2013). Such loads lead to the appearance of distortion 

in the waveform as well as voltage and currents in the power 

supply system. For this reason, we can no longer talk about a pure 

sinusoidal, but about the function resulting in a combination of 

fundamental and higher harmonic components, which are the 

integer multiples of the fundamental harmonic. More (higher) 

harmonics become a source of many problems in the power 

system that reduces the efficiency of the system itself, its 

reliability and economy (Alhaj et al., 2013; Petrovic, 2012a). In 

addition, eddy currents are inherent to higher harmonics, which 

increases losses that result in corona, skin effects, as the 

consequence that electrical parameters themselves directly 

depend on the value of the present frequency component. Higher 

harmonics also lead to overheating, frequent fuse blow, capacitors 

break-down, excess values of the neutral current, measuring 

inaccuracies, disrupting the function of the protective relays and 

inducing interference in the communications crossing switches, 

excess of neutral current, inaccuracy, disordering protection 

relays and induces interference in communication (Arrillaga and 

Watson, 2003; Petrovic, 2012a). 

According to the above issues, accurate harmonic estimation 

is crucial in order to eliminate the harmful effects of unwanted 

harmonic components, and thus reduce unwanted losses, while 

enabling the delivery of power of satisfactory quality. Several 

different techniques for estimating harmonic components that 

exist in a processed energy signal have been described in the 

literature. Fast Fourier transform (FFT) is generally the most 

commonly used and proposed technique for this purpose; 

however, FFT has several disadvantages and limitations that 

result from spectral leakage and picket fence and aliasing effects 

(Chang et al., 2000). In order to overcome these shortcomings in 

the current application of the FFT algorithm, many other 
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algorithms have been proposed over the last two decades that are 

generally divided into two major groups: parametric and 

nonparametric (Alhaj et al., 2013; Jain et al., 2011). 

Nonparametric algorithms include the application of adequate 

wavelet transformation, Hilbert-Huang transformation, Chirp z-

transformation and FFT. Parametric algorithms refer to 

procedures that use the Kalman filter, ANN and Adaline 

algorithm. As modern energy systems become more complex, 

with increasing process dynamics and very noisy, rapid 

monitoring and evaluation of harmonic components in this 

environment becomes more than a challenging task. The 

parametric and recursive algorithm should be able to cope with 

the system in the existence of a strong noise signal. The papers 

(Macias and Exposito, 2006; Chen et al., 2010) propose a model 

for estimating harmonic components based on the Kalman filter 

(KF) which allows monitoring of time-varying parameters 

depending on the value of the present noise, without prior 

knowledge of the characteristics of the process and noise, thus 

giving great importance to modelling state variables (Jain et al., 

2011). Artificial neural networks-ANNs, such as BPN and 

RBFNN, have also been proposed in (Wu et al., 2008; Chang et 

al., 2010). However, apart from the large amount of data they 

require in their realization, and also in order to perform the 

training of the network itself, due to the dynamics of the signal in 

the power system and the very time-varying characteristics of 

present non-linear loads. All of this makes it difficult to condition 

layer structures in real time (Jain et al., 2011; Chang et al., 2010). 

A linear adaptive neural network- Adaline is firstly proposed in 

(Sarkar et al., 2011). This is a simple type of neural network with 

fast convergence that can be used for online monitoring of time-

varying harmonic components but is sensitive to the presence of 

harmonics that are not included in the Adaline model (Jain et al., 

2011). 

Algorithms that are structurally recursive Newton-type 

algorithms have been proposed in (Terzija 2003, Dash and Hasan, 

2011; Petrovic and Rozgic, 2018), starting from the assumption 

that the assumed carrier signal frequency is an unknown 

parameter, enabling the simultaneous estimation of the spectrum 

and frequency of the power signal. In this way, it is possible to 

overcome the problem of sensitivity of the estimation algorithms 

to frequency variation. The signal model used by these algorithms 

is nonlinear, so a nonlinear estimation is performed, and the 

algorithms are of a recursive type. In practical applications, 

sequential tuning must be performed with the forgetting factor, 

which leads to much better convergence and increases the 

accuracy of the algorithm. 

If there is no synchronization between the generator and the 

acquisition device, then the design of FIR filters with optimized 

frequency responses, which do not require synchronization, is 

performed using the least squares (LS) technique (Sidhu, 1999; 

Petrovic, 2012a). In this way, the computational load is higher 

than in the situation when synchronization is achieved. The LS 

design method for high-order filters requires a significant amount 

of calculation that may not be completed within the available time 

equal to the duration of one sampling period. Therefore, these 

filters cannot be effectively adapted to the network in a situation 

where the carrier frequency varies. In order to reduce the 

requirements for the necessary recalculations, the appropriate 

tabulation of the weights can be applied. 

In the proposed paper, a new method for simultaneous 

estimation of the amplitude, frequency and phase of a processed 

complex-harmonic power signal is presented. For the realization 

of the proposed algorithm, only the value of the samples of the 

processed signal and the values of the first and second derivatives 

of that same sample value are needed. The system by which such 

processing can be realized requires an analog-to-digital 

conversion unit with a dithering process, a finite-impulse-

response (FIR) comb filter and a higher-order FIR digital 

differentiator followed by a decimator. The proposed method can 

be applied in the case when the fundamental frequency signal 

(input signal) has a range limited to the bandwidth of the first 

harmonic component. Unlike the existing algorithms for 

parameter estimation, the algorithm proposed here can perform 

signal parameter estimation at the same time, assuming that the 

frequency changes over time. The simulation results confirm the 

efficiency of the proposed algorithm. The described method can 

be applied in precise measurements of important electrical 

quantities such as RMS measurements of periodic signals, power 

and energy (Petrovic, 2012a). 

Unlike the IEEE standard that was analysed in (Arpaiaet al., 

2001), the algorithm proposed in this paper is significantly more 

stable and free of the propagation error. Namely, when using the 

procedure prescribed by the standard, the amplitude errors of the 

fundamental will propagate through the method since the 

amplitudes are used to reconstruct the detected sine wave and 

obtain the results before they are used to determine the next 

harmonic parameters. Overall, the frequency and amplitude errors 

from the first calculation are propagated to the higher harmonics 

and the calculation of the nth harmonic will invariably be 

contaminated by the errors of the phases and amplitudes from 

previous steps. 

MATERIAL AND METHOD 

Starting from the assumption that the input signal that is the 

subject of processing according to the proposed algorithm, is 

spectrally limited to the first M harmonic components and 

possesses a basic harmonic component of frequency f. Such a 

signal can be represented as the sum of Fourier components 

(Petrovic, 2012a): 

( ) ( )
M

k k
k 1

x t X sin k t

=

=  +   (1) 

where =f represents the angular frequency in radians per 

second, Xk is the amplitude value of the kth harmonic, k, is the 

phase angle of the kth harmonic in radians, M is the number of 

harmonic components in the input signal, and t is time in seconds. 

In order to extract a single sinusoidal signal, the frequency 

response of the filter must have zeros at the frequencies of the 

harmonics that are expected to be present in the processed signal 

and a unit gain at the fundamental frequency. If the frequency is 

not constant, then the filter parameters must be adjusted online 

during the process of the frequency estimation. In order to ensure 

satisfactory measurement, it is necessary to monitor the frequency 

of the system and apply certain corrections to the measurement 

algorithms and input filters. The block diagram of the adaptive 

algorithm that applies FIR comb filters is given in Fig.1 (Petrovic, 

2012a). 

The FIR comb filters (Kusljevic, 2008; Petrovic, 2012a) 

consist of second-order modules that eliminate dc component and 

harmonic frequencies and have unity gain at the fundamental 

frequency. The complete filter is realized as a cascade of all these 

modules. The second-order section that rejects the dc component 

and the frequency fS/2 (fS is the sampling frequency) and has a 

unity gain at the frequency of the kth harmonics fk=kf1 is given 

by the following transfer function: 

( )
21 z

H z0k 21 zk

−−
=

−−
 (2) 
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Fig. 1. Block diagram of the estimation algorithm with FIR comb filters. 

 

where ( )2 1 j
k 1 S1 z 2sin k T ,z e , 2 f / ,− − − − =  = =   , 

j1 1
1 1 1 Sz e , 2 f /

− − =  =   , f1 is the fundamental frequency (S is 

the sampling frequency), and jk1 1
kz e

− − = . 

The section that rejects the harmonics i 1i =  , and has unity 

gain at frequency k 1k =   is shown as: 

( )
( )

( )

1 21 2cos T z ziH zik 1 21 2cos T z zi k k

− −−  +
=

− −−  +
 (3) 

where the gain 

( ) ( ) ( )1 2
i k k 1 11 2cos T z z 2 cos k T cos i T ,− −−  + =  −   

i 1,2,3,...,M,i k=  , is used to adjust the gain for the kth 

harmonic.  S 1M f / 2f= is the maximum integer part of fS/2f1, 

which is equal to the number of sections in the cascade. The 

transfer function of the filter for the kth harmonic is given as 

(Petrovic, 2012a): 

( ) ( ) ( )
M

k 0k ik
i 1
i k

H z H z H z

=


=   (4) 

If the transfer function is determined with (4), then it 

practically applications uncontrolled phase shift on the basic 

frequency is appear. As some applications we need to provide an 

additional phase shift from /2 (for example, in measuring the 

reactive power), this can be achieved using the adaptive phase 

shifter (Kusljevic, 2008, Petrovic, 2012a). The estimation 

algorithm that is proposed is very simple because it uses closed-

form solutions for calculating filter coefficients. The number of 

sections in the cascade realization and the length of the data 

window can be changed during the measurement depending on 

the frequency changes. 

The filters (4) have nonunity gains at frequencies that differ 

from the nominal power system frequency, and for this reason, 

during the estimation process, we must perform adaption of their 

responses. This DFT modification with the FIR filter gives 

suppression of all signal harmonics, which causes the leakage 

effect, but because the FIR filter is adaptive, its coefficients 

depend on the estimation of the actual frequency. The accuracy of 

such an algorithm depends on the accuracy of frequency 

estimation. 

Estimation of the frequency of the complex-harmonic signal, 

using the finite number of noisy samples-results of discrete 

measurements, is an important task of both theoretical and 

practical aspects. This problem was the focus of research in the 

long period of time, and it was currently actual (Wu and Wang, 

2005; So et al., 2005; Klein, 2006; El-Shafey and Mansour, 2006; 

Trapero et al., 2007) since it is used in a wide range of 

applications in many fields such as control theory, relaying 

protection, intelligent instrumentation of power systems, signal 

processing, digital communications, distribution automation, 

biomedical engineering, radar applications, radio frequency, 

instrumentation and measurement. We will list some of the well-

known procedures for this issue: adaptive notch filter, time 

frequency representation based method, phase locked loop based 

method, eigensubspace tracking estimation, extended Kalman 

filter frequency estimation. Requirements set in front of the 

frequency estimator, which directly affects and the solution vary, 

but typical issues are accuracy, processing speed or complexity 

and ability to handle multiple signals.  

By differentiating the kth harmonic component of the signal 

(1) after filtering (Fig. 1), we obtain the following functional 

relations (Petrovic, 2012a): 

( )( ) ( )( )
( )  

( ) ( )

k k k
t t 1k n 1kn

1k n k n k

d x t d X sin k t
y t y n

dt dt

y t k X cos k t

=

 + 
= = = 

=   + 

 (5) 

( )( ) ( )( )
( )  

( ) ( )

2 2
k k k

t t 2k n 2kn2 2

2 2
2k n k n k

d x t d X sin k t
y t y n

dt dt

y t k X sin k t

=

 +
= = = 

= −   + 

 

 (6) 

where tn is the completely arbitrary (irregularly spaced samples) 

time moment in which the differentiation is done. Fig. 2 shows 

the configuration (scheme) which is provided a determination of 

the first and second-order derivate in an oversampling system. 
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Based on the obtained differential values-samples, the signal 

parameters can be determined as: 

( ) ( )
( )

( )
2k n

k n n
k n

y t1
f t kf t

2 x t
= =



( )
( )

( )
( ) ( )

( )
( )

( ) ( )( )

k n
k n n n n

1k n

k n
k n

n n k n

x t
t arctg 2k f t 2k f t t

y t

x t
X t

sin 2k f t t t

 
 =  −   

 

=
 + 

 (7) 

 

 
Fig. 2. A proposed system for signal reconstruction based on 

first and second-order differentiators in the oversampling system 

 

A sensor shown in Fig. 1 picks the signal who is the subject 

of processing, conditioning its value via conditioning circuit 

(amplifier) and band-limited anti-aliasing filter. After that, the 

analog signal x(t) is added with dithering noise, so that the 

combined signal can be fed to an ADC unit at an oversampling 

rate of FsL=Lfs Hz (samples/s), where fs and L denote the minimum 

sampling rate (in accordance with Nyquist sampling rate) and the 

oversampling factor, respectively (Petrovic, 2012a). Each digital 

sample x[n] is encoded using Nq bits, while the first and second-

order derivates of the digitized signal are obtained using the first 

and second-order FIR digital differentiators, which have transfer 

functions designed as H1D(z) and H2D(z). The obtained first and 

second-order derivative y1k[n] and y2k[n] after decimation by a 

factor L, allow us to determine the desired first and second-order 

derivate signals y1k[m] and y1k[m] at the Nyquist rate of fs Hz. The 

digital differentiator on the oversampling rate reshapes the 

spectrum of quantization noise, resulting in its being pushed 

toward the high-frequency range and filtered at the same time. In 

accordance with this, we can expect an improvement of signal-to-

quantization-noise ratio (SQNR) for the estimated derivative 

signal after decimation (Petrovic, 2012a). 

Since the anti-aliasing filter (Fig. 1) possess bandwidth of fs/2 

Hz, and how added the dithering noise raises the average spectral 

noise floor of the original processed signal, this process forces the 

quantized error to lose its coherence with the input signal so that 

the spectrum of the quantization noise becomes white and flat 

(Petrovic, 2012a). This is exactly the reason why we use the 

oversampling technique can effectively compensate degraded 

SQNR and continue to improve the SQNR by increasing the 

sampling rate. The typical amount of random wideband dithering 

noise usually has a root-mean-square (RMS) level equivalent to 

1/3- to 1-least significant bit (LSB) voltage level. An ideal 

frequency response of the kth-order differentiator HkD(z) is 

designated as (Petrovic, 2012a): 

( ) ( )

max

max max max

max

0,

/

0,

−   −


= −  


 


c

c

kj

kD c c

c

for

H e j for

for



  

    

  

 

 (8) 

where 2 f / fc sL =   is the continuous frequency of the digital 

signal in radians, while ( )2 f / 2 / f / Lmax s sL =  = is the 

maximum normalized digital frequency of the sensor signal in 

radians. In the oversampling system, max   , and 

( )j cH ekD


 is normalized to have a unit gain at max . The 

effective method for designing a FIR digital differentiator using 
the Fourier transform design, properties of FIR differentiator 
coefficient is proposed in (Tan and Wang, 2011; Petrovic, 2012a). 

Aware of the fact that in process of the determination of the 
samples xk(tn), y1k(tn), and y2k(tn) exists the error in the practical 
applications, we must conduct the best estimation of the given 
values in accordance with the criterion assumed. One of the well-
known ways to realize such an estimation procedure is to 
recalculate the values xk(tn), y1k(tn), and y2k(tn), through N arbitrary 
passages, forming series xk(tn)i, y1k(tn)i, and y2k(tn)i (i=1,...,N, 
k=1,2,…,M). In such an organized procedure, it takes that samples 
xk(tn), y1k(tn), and y2k(tn) taken at the same points in time during the 
detected period of the processed signal. Also are assumed that the 

random errors n of measurements are unbiased and not mutually 

correlated, E(i)=0 and have the same variance var(i)=2. In this 
situation, it is possible to use the weighted average procedure for 
decreasing random errors in the determination of observed values. 
The averages ( ) ( ) ( )k n 1k n 2k nˆ ˆ ˆx t ,y t ,y t  of the values xk(tn), y1k(tn), 

and y2k(tn) are calculated as (Petrovic, 2012a): 

( )

( )

( )

( )

nxk

xi k n i
i 1

k n nx

x ik
i 1

ny jk

y i jk nkj
n 1

jk n n
yj

y ijk
i 1

w x t

x̂ t

w

w y t

ŷ t ; j 1,2

w

=

=

=

=

=

= =









 (9) 

n nnx y yk 1k 2k

x i y i y ik k1 2k
i 1 i 1 i 1

w w w N

= = =

= = =    

where x i y i y ik 1k 2k
w ,w ,w are non-negative weights of series 

xk(tn), y1k(tn), and y2k(tn). The x y yk 1k 2k
n ,n ,n  defines the 

numbers of different values in the above series through N 
passages. The number of passages N in a practical application of 
the proposed algorithm depends on the required processing speed 
- larger N allows a more precise estimation of the signal 
parameters. The estimation of the value of samples 

( ) ( ) ( )k n 1k n 2k nˆ ˆ ˆx t ,y t ,y t  it is necessary to perform the re-

calculation of the unknown amplitudes and phases, for all 
harmonic components of the limited periodical signal, was 
evaluated by the process of measures. Based on such certain 
values of Fourier coefficients, it is possible to calculate the 
effective signal value, active power and energy. After the 
calculations are conducted, we can restart the sampling of the 
input signal. 
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RESULTS AND DISCUSSION 

The proposed algorithm was tested by simulation in the 

MATLAB program package. The first and second derivation of a 

complex input signal was performed with an 8-bit ADC resolution 

and an oversampling factor L of 256. The dithering noise of 

( )1/ 3 LSBd =  is added to the processed signal before 

oversampling. In this way, a multi-sinusoidal input signal was 

oversampled with 4096L samples. 

First, the processed modulated sinusoid test signal was 

processed (a change of steps of 50 to 49.8 Hz on T = 0.06 s). The 

sinusoid signal was added white noise with SNR = 60 dB. The test 

was developed with a distorted source voltage (10% of third, 5% 

five, 3% of the seventh and 2% of the eleventh harmonious). The 

phase corners of each accordion are randomly selected. The 

results obtained confirm a good dynamic response to the change 

algorithms and frequency accuracy. The proposed algorithm is 

capable of adjusting the time variations of the electrical signal 

characteristics over time. It was noted that except for a short 

passage at the time of the step, the algorithm effectively follows 

variations in the frequency. As shown in Figure 3, we received a 

technique that provides a precise frequency assessment by an 

error in the range of 0.001 Hz. 

The first test was conducted in the way that an input-frequency 

modulated sinusoidal test signal (step frequency change from 50 

to 49.8 Hz at t=0.06 s) was processed, while a white noise with 

SNR=60 dB is super pointed on it. The distorted source voltage 

with the presence of 10% third, 5% fifth, 3% seventh and 2% 

eleventh harmonics was used during the simulation, while the 

phase angles are randomly chosen. The obtained results confirm 

a good dynamic response of the proposed algorithm in such an 

environment, and it is capable of adaptively tracking time 

variations of the characteristics of the power signal over time. It 

is observed that apart from a brief transient at the time of the step 

change, the algorithm effectively follows the variations in 

frequency, Fig. 3-algorithm provides accurate frequency 

estimation with an error lower than 0.001 Hz. 

 

 
Fig. 3. Estimation for f=50 Hz for t<0.06 s and f=49.8 Hz for 

t>0.06 s with SNR=60 dB and with harmonics presence. 

 

The ability of the frequency estimation over a wide range of 

frequency changes is investigated using sinusoidal test signals 

with the following time dependence ( ) ( )f t 50 0.5sin 10 t= +   as 

shown in Fig. 4. Good dynamic responses can be noticed. 

Considering the case simulates extreme conditions in a power 

system, the error can be accepted by most applications. 

In order to examine the possibility of frequency estimation in 

a wide range of frequency changes, sinusoidal test signals with 

time dependence ( ) ( )f t 50 0.5sin 10 t= +   as shown in Fig. 4 

was used. It can be stated that the proposed procedure has 

satisfactory dynamic responses, especially for the reasons that in 

this way we simulated extreme conditions in the power supply 

system. Estimation is acceptable for most practical applications. 

 

 
Fig. 4. Estimation for ( ) ( )f t 50 0.5sin 10 t= +   with SNR=60 

dB with harmonics presence. 

 

In order to achieve a better performance assessment of the 

proposed estimation algorithm, in the condition of the noisy 

processing, we added to the input signal an additive white noise 

of variable power. The random noise signal was used to obtain the 

prescribed value of the SNR, which is defined as SNR =

( )20log A / 2 , where A is the magnitude of the signal 

fundamental harmonics, and  is the noise standard deviation, Fig. 

5 shows the maximum errors that are observed in the frequency 

and harmonious estimates when input signals of 30, 50, and 70 Hz 

having SNRs of 40, 50, 60, and 70 dB were used. It should be 

noted that, in practice, SNR on the power signal obtained from the 

power system is between 50 and 70 dB. It can be stated that in 

these noise levels, the proposed algorithm generates a very small 

error. 

The statistical characteristics of the proposed estimator can be 

evaluated based on the samples generated in the simulation 

procedure, with the added noisy component. To assess the 

deterministic parameters, the most commonly used lower bound 

for the mean squared error (MSE) is the Cramer-Rao lower bound 

(CRLB), given by the inverse of the Fisher information (Kay, 

1988; Stoica et al., 2000; Belega et al. 2010). Fig. 6 shows MSE 

of the amplitudes after 105 simulations. The results clearly show 

that the proposed assessment scheme asymptotically reached the 

CRLB as in (Belega et al. 2010; Pantazis et al., 2010; Petrovic 

and Damljanovic, 2017; Petrovic and Damljanovic, 2018). 

The proposed algorithm was additionally tested using 

standard sigma-delta ADC with an effective resolution of 24 bit, 

and sampling rate fS=1 kHz. The input signal with the fundamental 

frequency f = 50 Hz in process of the simulation was defined as: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

x t 1sin 2 ft 0.81sin 4 ft / 3 0.62sin 6 ft

0.58sin 8 ft / 6 0.41sin 10 ft / 4

0.33sin 12 ft /12 0.16sin 14 ft

=  +  +  +  + 

+  +  +  + 

+  +  + 

 (10) 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Maximum estimations errors: a) frequency; b) 1st 
harmonic; c) 3rd harmonic; d) 5th harmonic 

 

 
Fig. 6. MSE of the three harmonic amplitudes as a function of 

SNR. 

 

The output PSD (Power Spectral Density) of the ideal thermal 

noise affected on the input signal defined in (10) possesses a clock 

jitter in the range of -100 to -170 dB. The signal-to-noise 

distortion ratio (SNDR) was ranged between 60 dB and 80 dB. 

The superposed noise and jitter will cause a relative error in the 

detection of the fundamental frequency of 0.01. In order to realize 

a comparison of such obtained simulation results, Figs. 7 and 8 

show the maximum errors observed in harmonics magnitude and 

phase estimation for the signal defined in (10)) by the proposed 

reconstruction algorithm, FFT and continuous wavelet 

transformation (CWT) (Tse and Lai, 2007). FFT was conducted 

with a sampling rate of 25kHz, data length equal to 25000, and in 

the time period of 1s. 

 

 
Fig. 7. Comparison of estimation errors observed in harmonics 

magnitude 

 

 
Fig. 8. Comparison of estimation errors observed in harmonics 

phase 

 

In order to make clear the comparison among the different 

estimation procedures, Fig. 9 shows the power spectral density 

(PSD) of a 1s section of the processed signal (acquisition time), 

with parameters defined in (10). In order to minimize the leakage 

effect for FFT, the Hanning window has been applied. 

The accuracy of the proposed algorithm is within the limits 

that are attained in processing a signal of form defined in (10), in 

(Belega et al. 2010; Agrež, 2005; Petrovic and Stevanovic, 2011; 

Petrovic, 2015), and better than the one presented in (Tse and Lai, 

2007, Kuseljevic, 2010; Petrovic, 2012b; Petrovic, 2012c). 
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Fig. 9. Comparison among the different estimation techniques applied, with respect to PSD 

 

CONCLUSION 

The paper proposed and described a new procedure for the 

estimation of unknown parameters of the processed input multi-

sinusoidal signal. Completely new and reduced analytical 

expressions are derived, which creates the possibility to perform 

calculations with a low numeric error. The proposed algorithm is 

able to simultaneously assess more parameters of signal-

frequency, phases and amplitudes, assuming the time-varying 

frequency. Based on the identified parameters, we can determine 

all relevant values in the electric utilities (energy, power, RMS 

value). The measurement uncertainty is a function of the error in 

synchronization with fundamental frequency, due to no stationary 

nature of jitter-related noise, and white Gaussian noise, and an 

error that occurs in determining the value of samples. The 

simulation results show that the proposed algorithm can offer 

satisfactory precision in the estimation of periodic signals 

parameters in real power systems. 
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