

This is an open access paper under the license

www.bizinfo.edu.rs

A machine learning-based selection approach for solving the single machine scheduling

problem with Early/Tardy jobs

Pristup odabira zasnovan na mašinskom učenju za rešavanje problema rasporeda jedne mašine sa

ranim/kasnim zadacima

Ahmed-Adnane Abdessemed a, Leila-Hayet Moussa, Khaled Benaggounea, Toufik Bentrciaa

a University of Batna 2, Laboratory of Automation and Production Engineering (LAP), Department of Industrial Engineering, Batna,

Algeria

A r t i c l e i n f o A b s t r a c t

Original scientific paper/ Originalan

naučni rad

Received/ Rukopis je primljen:

31 July, 2023
Revised/ Korigovan:

1 January, 2024

Accepted/ Prihvaćen:
2 February, 2024

DOI:
https://doi.org/10.5937/bizinfo2401001A

UDC/ UDK:
004.85

Today, the algorithm selection paradigm has become one of the promising

approaches in the field of optimization problems. Its main goal is to solve each case

of an optimization problem with the most accurate algorithm using machine

learning techniques. This paper treats the issue of the algorithm selection for the

Single Machine Scheduling Problem with Early/Tardy jobs by adapting three meta-

heuristics from the state-of-the-art, namely genetic algorithm, particle swarm

optimization, and tabu search. In the proposed framework, we combine the running

time and the cost function to get a new performance criterion. A large set composed

of 98000 instances of the problem is generated with 12 features characterizing each

instance. We carry a statistical comparison of the implemented meta-heuristics, and

we evaluate 10 classifiers. It can be deduced that the Dagging algorithm combined

with the Random Forest is the most likely to be the best classifier, which achieves

88.44% of the maximum accuracy.

Keywords: single machine scheduling problem, early/tardy jobs, algorithm

selection, machine learning, meta-heuristics

S a ž e t a k

Danas je paradigma izbora algoritama jedan od obećavajućih pristupa u oblasti optimizacijskih problema. Njegov glavni cilj je da

reši svaki slučaj problema optimizacije najtačnijim algoritmom koristeći tehnike mašinskog učenja. Ovaj rad obrađuje pitanje

izbora algoritma za problem raspoređivanja jedne mašine sa ranim/kasnim zadacima prilagođavanjem tri meta-heuristike iz

najnovije tehnike, odnosno genetskog algoritma, optimizacije roja čestica i tabu pretraživanja. U predloženom okviru kombinujemo

vreme rada i funkciju troškova da bismo dobili novi kriterijum učinka. Generiše se veliki skup sastavljen od 98000 instanci problema

sa 12 karakteristika koje karakterišu svaku instancu. Izvodimo statističko poređenje implementirane metaheuristike i procenjujemo

10 klasifikatora. Može se zaključiti da je Dagging algoritam u kombinaciji sa Random Forestom najverovatnije najbolji klasifikator,

koji postiže 88,44% maksimalne tačnosti.

Ključne reči: problem raspoređivanja jedne mašine, rani/kasni zadaci, izbor algoritma, mašinsko učenje, metaheuristika

1. Introduction

Current technological advancements in industrial systems

have offered a substantial opportunity, which helped the

boost of the organization’s production ability to meet the

customer’s expectations such as the delivery date. For this

reason, most modern production and manufacturing

systems follow robust and well-defined philosophies

including flexible manufacturing systems, and just in time

(Chan et al., 2010). In fact, unpredicted challenges such as

Corresponding author
E-mail address: adnane.abdessemed@univ-batna2.dz

the early or late product delivery times do negatively

affect the total production charges. So, numerous studies

have been conducted in the literature to remedy this

problem. The Single Machine Scheduling Problem,

including Earliness/Tardiness penalties and distinct due

dates (SMSPET), is amongst the most studied scheduling

problems with non-regular objective function (Pinedo,

2012). Such problem belongs to the NP-hard class (see

(Sourd et al., 2005)) and is typically harder to manipulate

with respect to problems having regular objective

http://www.bizinfo.edu.rs/
https://doi.org/10.5937/bizinfo2401001A
mailto:adnane.abdessemed@univ-batna2.dz

Ahmed-Adnane Abdessemed, Leila-Hayet Mouss, Khaled Benaggoune & Toufik Bentrcia

BizInfo (Blace), 2024, volumen 15, broj 1, str. 1-10 2

functions (Yau et al., 2008). Despite that several authors

tried to solve this problem with different methods, there is

no best algorithm for all configurations of the problem.

The SMSPET can be defined as follows: We consider J a

set of n jobs to be executed on a single machine, where no

idle times or job preemptions are permitted. It is also

assumed that all jobs are ready for processing at t=0. Each

job i is characterized by: processing time pi, due date di,

earliness penalty θi if i is terminated before the due date

and tardiness penalty βi if i is achieved after the due date.

Hence, the goal is to determine a processing order for the

elements of J to optimize the total sum of earliness and

tardiness penalties. If we denote by Ci the completion time

associated to the job i then the Earliness and the Tardiness

formulas can be expressed as Ei=max {di − Ci, 0}, and

Ti=max {Ci − di, 0}, respectively. At this level, the aim is

to solve the following optimization problem:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝜃𝑖𝐸𝑖 + 𝛽𝑖𝑇𝑖)
𝑛
𝑖=1 (1)

Many authors have attempted to solve this problem based

on exact methods, starting with the earliest works of

(Abdul-Razaq et al., 1988), where a dynamic

programming procedure is presented. Furthermore, two

branch and bound algorithms have been investigated by

(Sourd, 2009) for problems in which common and general

due dates are assumed. In Tanaka et al., (2009), a

successive sublimation dynamic programming-based

exact approach is involved for the standard single machine

scheduling problem.

Exact methods are computationally expensive, yet in most

real-world cases, they are not quite practical. Exact

methods ensure locating the ideal arrangement besides its

optimality for each small size instance of the problem.

However, the optimal solution cannot always be

determined in a reasonable time. Hence, the assurance of

finding an optimal solution can be abandoned for getting

a generally good solution in polynomial time, and that is

the goal of approximate algorithms.

Numerous heuristics have been deployed to solve the

SMSPET, such as the beam search method in (Ow et al.,

1989). A heuristic search was developed by (Sourd et al.,

2005). Besides, simple linear dispatching rules have been

considered to solve this problem as expressed by Longest

Processing Time (LPT), Earliest Due Date (EDD), and

Shortest Processing Time (SPT) rules (Valente, 2007).

Heuristic algorithms can find feasible solutions in

polynomial time; however, they cannot explore the total

solution space.

Meta-heuristics can practically get near-optimal solutions

in an acceptable time. Many meta-heuristics for the

SMSPET were proposed in the literature. (Wan et al.,

2002) examined the single machine scheduling problem

with distinct due windows and weighted

earliness/tardiness using Tabu Search procedure,

including an optimal timing algorithm, with problem sizes

of 15 to 80 jobs. A particle swarm optimization algorithm

was proposed by (Tasgetiren et al., 2004) to solve the

single machine problem with total weighted tardiness.

(Tsai, 2007) proposed a genetic algorithm for solving a

single machine scheduling problem with Early/Tardy jobs

and with ready times. In addition, (Chang et al., 2008)

recommended a genetic algorithm with injecting artificial

chromosomes for the SMSPET. Ant colony and variable

neighborhood search-based approaches were suggested in

(M’Hallah et al., 2016) to solve SMSPET.

It is worth noting that the existence of several algorithms

to solve the problem may appear as an advantageous

aspect from a theoretical viewpoint. However, it

practically yields a drawback in choosing the best

algorithm among the proposed candidates. Testing all the

existing algorithms for each new problem in an industrial

environment is prohibitive in terms of computational

complexity. Hence, such critical challenge can be stated

as: ’How to select the more adequate algorithm for a new

instance of the problem without testing?’.

As claimed by the No-Free Lunch theorem (NFL), the

assumption that an algorithm outperforms the others in all

cases needs to be revised. This theorem affirms that no

algorithm has the best overall performance (Ho et

al.,2001). However, if we consider that one specific

algorithm can be used as a solver for a single instance of

the problem, we are facing an Algorithm Selection

Problem (ASP). The NFL states that one cannot estimate

an algorithm’s results relying only on the computational

complexity. Instead, researchers have focused on

empirical methods to estimate the best algorithm for every

instance based on its performance on previously solved

problems.

To the best of our knowledge, this work showcases an

original contribution related to the development of reliable

meta-heuristic selection frameworks for SMSPET, which

fits well into the industrial needs. Three meta-heuristics

were deployed to solve the SMSPET. Moreover, a set of

machine learning algorithms has been tested to find the

most accurate classifier for this problem. A statistical

comparison of meta-heuristic results has been conducted,

aiming to scrutinize each algorithm’s behavior for

SMSPET. We also try to define a meaningful performance

metric that is not only adapted to industrial constraints but

also agrees with the just in time philosophy. Therefore,

our main objective is to study the impact of the algorithm

selection technique on the quality of solutions.

The remainder of this paper is organized as follows. In the

second section, we provide the state of the art related to

the algorithm selection problem. The third section is

dedicated to highlighting the elaborated methodology,

including the description of its different components.

Section four is devoted to the experimental results and

discussions, and we end the paper with some conclusions

and future perspectives in section 5.

2. Background of the algorithm selection problem

The algorithm selection strategy is widely used in various

ways to solve different problems. In the following, we

discuss the theoretical aspect and state of the art related to

the algorithm selection problem.

A machine learning based selection approach for solving the single machine scheduling problem with Early/Tardy jobs

BizInfo (Blace), 2024, Volume 15, Number 1, pp. 1-10 3

ASP has been tackled by several research attempts dating

back to the earliest work of (Rice, 1976) in which he

formulated the formal abstract model of ASP. The main

purpose behind the ASP framework is to facilitate the

selection of the most accurate algorithm from a set of

algorithms to solve a given instance of a problem by

maximizing the performance of solutions without

involving all existing algorithms. Rice model can be stated

as follows:

Let x ∈P, be a given problem defined with the

characteristics f (x) ∈F, one must find the selection

mapping S(f (x)) into algorithm space A, so that the picked

algorithm α ∈A optimizes a known performance measure

y(α(x)) ∈Y . where P is the set of problem instances, F is

the set of characteristics defining the problems; A is the

set of all the algorithms considered to solve the problem,

Y is the set of performance measures to be optimized, as

illustrated in Figure 1.

Figure 1. Algorithm selection model proposed by Rice

as reproduced from (Smith-Miles,2009)

The importance of Rice’s model has notably increased in

a parallel way with the development of the approximate

methods of problem resolution, and this has created an

issue in deciding which one is the best algorithm for every

single problem. Consequently, researchers started to apply

this model with different approaches in different fields. In

the literature, several successful algorithm selection

applications were published, such as SATzilla2012 (Xu et

al., 2012) and Autofolio (Lindauer et al., 2015), which

utilized the empirical hardness models to estimate the best

algorithm for the SAT problems. Many NP-hard

optimization problems were solved by different algorithm

selection approaches. In Table 1, we summarize the core

research works published in the field. For a detailed

survey of algorithm selection, the interested reader can

refer to (Kerschke et al., 2019).

Table 1. Essential works on the algorithm selection problem published in the literature.

Reference Studied Problem (P) Selected algorithms (A) Learning techniques S(f(x))

Nudelman et

al., 2004
SAT Problem Heuristics Regression

Guo et al., 2007 MPE Problem

Exacts (Clique-Tree Propagation)

Approximate (Stochastic sampling,

Hybrid, Search)

Decision tree Bayesian network

Smith-Miles et al.,

2009

Single Machine Scheduling

Problem (Early/Tardy)
Heuristics (EDD, SPT)

Neural Networks, Decision tree, Self-

Organization Maps

Kandaetal., 2011
Traveling Salesman Problem

(TSP)
Meta-heuristics (TS, GRASP, SA, GA)

Multi-label classification

(KNN,DT,SVM,NB)

Smith-Miles et

al.,2013
Graph coloring problem 8 Meta-heuristics Naive Bayes classifier, SVMs

Pihera et al.,2014
Traveling Salesman Problem

(TSP)
Meta-heuristics (MAOSetLKH)

Bayesian Network, Decision tree,

Random Forests, SVM

Wagneretal.,

2018

TravelingThief Problem

(TTP)
21Heuristics

Different, well-known algorithm selection

approaches (Flexfolio, SATzilla, ISAC,

3S)

Scott et al.,

2023

Satisfiability Modulo

Theories (SMT)

-23 configurations of the cvc5

-Bitwuzla, cvc5 andZ3

AdaBoosting, Multi layer perceptron,

linear ridge regressio

Kerschkeetal.,

2019
Survey - -

Due to the scarce references in the literature regarding the

algorithm selection theory on the SMSPET, only very few

papers can be found, for instance, the work of (Smith-

Miles et al., 2009). They applied the ASP using the Meta-

learning approach. The aforementioned study is limited to

only two heuristics, EDD and SPT, and its aim was to

understand the connection between the scheduling

problem configuration and the heuristic efficiency. In

practice, heuristic methods are restricted in the sense of

generating only admissible solutions. In contrast, the

Ahmed-Adnane Abdessemed, Leila-Hayet Mouss, Khaled Benaggoune & Toufik Bentrcia

BizInfo (Blace), 2024, volumen 15, broj 1, str. 1-10 4

algorithm selection will be more complex using meta-

heuristic algorithms.

3. Methodology

In this section, we explain in detail how we can adapt

Rice’s model to select the best meta-heuristic for the

SMSPET. Figure 2 describes the principal components of

the proposed framework.

Figure 2. Illustration of the proposed methodology

To adjust Rice’s model within the context of our study, we

proceed in the following steps. We start by generating a

set of instances of SMSPET (problem instances space

(P)), then we calculate the features for each instance

(features space (F)). After that, we have to create an

algorithm portfolio of meta-heuristics (algorithm space

(A)) and define a performance measure (Y) to compare the

algorithms. Machine learning algorithms are used to

determine the selection mapping S(F(x)), which can be

seen as a multi-class classification problem.

3.1. Instances generation

One of the most critical steps in this study is obtaining a

large dataset representative of real-world problems. The

existing benchmarks are not large enough to fit within the

context of our study. Therefore, a dataset of 98000

instances is generated according to the following rules

defined in (Sourd et al., 2005):

− Number of tasks (N): N ∈ {20, 40, 60, 80, 100, 120,

140, 160};

− Processing Time (pi): Generated randomly from a

uniform distribution of the interval U [10, 100];

− Due dates (di): For each task, a random due date is

generated from the uniform distribution:

U[dmin,dmin+ρ(somm(pi))] where

dmin=max(0,(somm(pi))(τ −ρ/2)), τ denotes the delay

parameter and ρ the parameter of the row of times;

− We take the parameters τ and ρ from the following

intervals:

τ ∈{0.2, 0.3,0.4,0.5,0.6,0.7,0.8}, ρ ∈

{0.2,0.3,0.4,0.5,0.6,0.7,0.8};

− Each time 25 problems are created.

A machine learning based selection approach for solving the single machine scheduling problem with Early/Tardy jobs

BizInfo (Blace), 2024, Volume 15, Number 1, pp. 1-10 5

3.2 Features definition

The following features can characterize every instance of

the SMSPET. The first six features were used in (Smith-

miles et al., 2009), and we propose six additional features

in the context of our study as follows:

− Number of jobs N assigned to the instance;

− Mean Processing Time 𝑃̅: The average processing

time of all jobs in a given instance;

− Processing Time Range pσ: The range of all jobs’

processing time in the instance;

− Tardiness Factor τ: In (Baker et al.,1974), the tardiness

factor τ of a problem is defined as a coarse measure of

the ratio of jobs, which are estimated to be tardy in an

arbitrary sequence. This feature is given by 𝜏 = 1 −
Σ𝑑𝑖

𝑛Σ𝑝𝑖
;

− Due Date Range Dσ: Defines the deviation of the due

dates from the average due date for all jobs in the

instance. It is designated by 𝐷𝜎 =
(𝑏−𝑎)

Σ𝑝𝑖
, where b

indicates the maximum due date in the instance and a

stand for the minimum due date in the instance;

− Penalty Ratio ρ: The maximum ratio of the tardy

penalty to the early penalty over all jobs in the

instance;

− MaxPi: the maximum processing time in the instance;

− MinPi: the minimum processing time in the instance;

− MaxEP: the maximum earliness penalty;

− MaxTP: the maximum tardiness penalty;

− PinmoyE: the mean earliness penalty;

− PinmoyT: the mean tardiness penalty.

The Correlation Attribute Evaluator (built-in Weka) is

used to rank the features in terms of their correlation with

the best algorithm. The features have been ranked as

follows: (N, Drange, Pratio, MaxEP, MaxTP, Tfact,

MinPi, Prange, MaxPi, PinmoyT, Pmoy, PinmoyE).

3.3. Meta-heuristics description

To solve SMSPET, we create a portfolio of algorithms

from different types, namely population-based, swarm-

based, and neighborhood search-based meta-heuristics.

The algorithms used in this research are adapted from the

state-of-the-art. In the following, we present a concise

description of the algorithms used in this study.

Genetic Algorithm: The genetic algorithm (GA) is a

population-based meta-heuristic originally developed by

(Holland et al.,1992), where the population is composed

of several chromosomes. Each chromosome is a set of

genes. In our problem, every gene is a job to be run on the

machine, and a chromosome represents a feasible

solution, which is a sequence of jobs. The efficiency of

good exploitation and exploration of the solution space

has been proven using the genetic operators such as the

crossover and the mutation operators. A standard GA is

illustrated in Figure 3.A. In this paper the GA proposed in

(Tasi, 2007) is adapted to solve the SMSPET problem.

The initial population is generated using some heuristic

rules to accelerate the convergence of the algorithm. In

this work, we create an initial population as follows:

− Sort tasks in ascending order of the execution time

(SPT);

− Sort tasks in ascending order of the due date (EDD);

− Sort tasks in ascending order of the earliness penalty θi;

− Sort tasks in ascending order of the tardiness penalty βi;

− The rest of chromosomes are generated randomly.

Figure 3. Standard representation of the metaheuristic’s flowcharts
Figure 3.A. GA. Figure 3.B. PSO Figure 3.C. TS (Hao et al., 2017)

Tabu Search: The tabu search (TS) is a neighborhood

search method, based on the hill-climbing algorithm with

several steps directions (Laguna et al., 1991). The TS

initially proposed in (Glover, 1989) and (Glover, 1990), is

designed to avoid the local optima. By allowing moves

from the current solution r to its best neighborhood

solution r1 even if r is better than r1, with the condition

that this solution is not in the tabu list. In this work, we

adapt the TS proposed in (Wan et al., 2002) to the

SMSPET. The TS starts from an initial solution r0, which

can be generated using a simple heuristic such as EDD,

and iteratively moves from this solution to its best

neighbor generated by exchanging positions of jobs. TS is

presented in Figure 3.C.

Ahmed-Adnane Abdessemed, Leila-Hayet Mouss, Khaled Benaggoune & Toufik Bentrcia

BizInfo (Blace), 2024, volumen 15, broj 1, str. 1-10 6

Particle Swarm Optimization: PSO is an optimization

algorithm, inspired by the social behavior of flock of birds

or school of fish. A swarm of particles simultaneously

explores a problem’s search space with the objective of

finding the global optimum configuration. The original

PSO was proposed by Eberhart and Kennedy (Eberhart et

al.,1995) to optimize continuous functions. In this paper,

the PSO proposed in (Tasgetiren et al., 2004) is adapted to

fit the SMSPET. To enable the continuous PSO solving

the SMSPET, we use a heuristic rule called Smallest

Position Value (SPV). The PSO algorithm is presented in

Figure 3.B.

3.4. Performance definition

To define the best algorithm among a set of candidate

algorithms, one should ask the following question, ‛How

to compare many algorithms?’. The intuitive answer is to

compare algorithms based on their best cost function

values. However, in practice, the running time is an

important factor which cannot be neglected. In some

cases, the algorithm can find a good solution in a large

running time, one can sacrifice the quality of solution for

good running time. To clarify this aspect let us consider

for example 10 instances randomly selected from our

dataset, and try to solve them using GA, PSO, and TS.

Figure 4 shows a bar plot of the best cost function and the

running time obtained by each of these algorithms.

Figure 4. Illustrative example for the compromise

between the cost function and the execution time

In the seventh instance, we notice that the TS has found

the best solution, but the running time was extremely large

compared to the other algorithms. However, for the eighth

instance there is a small difference between the solutions

obtained by these three algorithms, but the running time

of the TS is too large compared with GA and PSO. So, if

we have to privilege one of these algorithms over its

counterparts, one should consider jointly the running time

and the cost function. Consequently, we propose as an

evaluation measure the product of the running time by the

cost function value, as the objective is to minimize both of

the aforementioned criteria.

Let Obj(α) be the best penalty obtained by the algorithm

α and T (α) be the time needed to solve the given instance;

our objective is to select the algorithm which has the

minimum performance Y (α) = (Obj(α) × T (α)).

3.5 Algorithm prediction

After getting the algorithms results, we define the best

algorithm by comparing the algorithm results for all

instances. A single integer variable represents the best

algorithm. Let bestm= 1 if GA is the best algorithm, bestm=

2 if PSO is the best algorithm, and bestm= 3 if TS is the

best algorithm for the instance m. Every sample of the

meta-data is a vector of features labeled by the value of

the variable bestm.

The selection mapping s(f (x)) which associates for each

set of features from F an algorithm α from A, is a learning

problem (see Smith-Miles et al., 2009). Therefore, a

classification model is built using machine learning

algorithms on the meta-data. This model is used to predict

the best algorithm for new incoming data based on the

previously solved instances. A variety of machine

learning algorithms have been tested; such as decision

trees, neural networks, and ensemble learning algorithms.

The classification model is validated by the ten-fold cross-

validation process. (For more details on the evaluation

metrics, the interested reader may refer to (Sammut et al.,

2011)).

4. Computational results

In this section, we elucidate the main outcomes of the

conducted numerical experiments and we provide some

remarks and discussions.

Algorithms

All the algorithms used in this study were implemented

and tested in MATLAB using a computer with the

following features: Intel(R) Core (TM) i5-2430M CPU @

2.40GHz and RAM = 6,00GB. Due to the high

computational costs, we choose a small size population,

and we run the algorithms with the same number of

iterations.

Meta-heuristics results and competitiveness

In order to evaluate the modified meta-heuristics adopted

in this paper, the algorithms are tested based on the

benchmark used in (Tanaka et al., 2009). The investigated

meta-heuristics are evaluated and compared on

benchmark instances of size N=40, by computing the

mean deviation from the optimal solution. The results are

presented in Figure 5. Also, a competitiveness evaluation

is performed to verify the efficiency of the proposed

algorithm selection process. We qualify a set of

algorithms as competitive when each algorithm surpasses

the remaining ones on a subset of instances while being

surpassed by at least another algorithm on the rest of

instances, and these subsets are large enough. The

competitiveness ratio Com is defined in (Messelis et

al.,2014) as

Com = 2min (|A|/|T |, |B|/|T |) (2)

where, A stands for the ensemble of instances on which

algorithm A exhibits better performance than algorithm

B, and B denotes the ensemble of instances on which

algorithm B do better than algorithm A, and T is the total

A machine learning based selection approach for solving the single machine scheduling problem with Early/Tardy jobs

BizInfo (Blace), 2024, Volume 15, Number 1, pp. 1-10 7

set of instances. In the case of three algorithms Com can

be defined as,

Com = 3min (|A|/|T |, |B|/|T |, |C|/|T |) (3)

The closer Com is to 1, the more the competitiveness of

the algorithms is verified to each other. In the proposed

framework the competitiveness factor equals to:

The closer Com is to 1, the more the competitiveness of

the algorithms is verified to each other. In the proposed

framework the competitiveness factor equals to:

3min (28384/98000, 45106/98000, 24510/98000) = 0.75

which shows that the algorithms are sufficiently

competitive, and the algorithm selection is useful.

Figure 5. Mean deviations of each algorithm from the

optimal solution on instances with n=40

Discussion of the algorithms results

After running the proposed algorithms on the whole

dataset, we categorize the obtained results by problem size

(number of jobs). For each category, we have computed

the Average measure provided in (9) and the standard

deviation STD given in (10) of the solutions obtained by

each algorithm over all the instances in the category, and

we consider the best and the worst solutions for every

category. The statistical results are classified in the

following tables, where Table 2 shows the cost function

and the running time results, and in Table 3, we depict the

results of the proposed performance criterion Y .

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁𝑏𝑖𝑛𝑠
∑ 𝑠𝑜𝑙𝑟
𝑁𝑏𝑖𝑛𝑠
𝑟=1 (4)

𝑆𝑇𝐷 = √
1

𝑁𝑏𝑖𝑛𝑠
∑ (𝑠𝑜𝑙𝑟 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)²𝑛𝑏𝑖𝑛𝑠
𝑟=1 (5)

where Nbins is the total number of instances in the

category, solr is the solution obtained for the instance r.

The analysis of the statistical results leads to the following

remarks:

− The PSO algorithm is the fastest algorithm among the

algorithms set;

− The TS algorithm provides excellent results on the

small instances. Whereas, the running time is too large

in large instances;

− GA generally has good results and an average running

time;

− These results agree with the NFL theorem, so there is

no best algorithm over all the algorithms used to solve

the SMSPET;

− Let us consider a medium-size category of problems

(N=100). If the best algorithm selection is decided

according to the cost function value, the best algorithm

is TS with the lowest average cost function.

Nevertheless, the average running time of TS is six

times larger than the PSO’s average running time. This

problem occurs in most categories.

The overview given by the statistical analysis is not

satisfactory enough to help in algorithm selection.

Therefore, our research is consolidated by using machine

learning techniques to estimate the best algorithm for

every instance.

Table 2. Cost function and running time statistics (The lowest values are written in bold)

N
 Cost function Running time

Algorithm Best Worst Average STD Best Worst Average STD

20

GA 279 40266 6267.14 4692.24 1.08 5.26 1.18 0.09
PSO 341 40906 7189.24 5002.34 0.75 6.39 0.84 0.19
TS 276 40300 6230.47 4695.21 0.08 0.44 0.11 0.02

40

GA 973 142729 23504.61 17010.74 1.26 3.20 1.34 0.09
PSO 2110 147874 30961.07 19652.33 0.99 1.82 1.14 0.05
TS 694 142263 22979.44 16960.21 0.58 2.25 0.77 0.05

60

GA 2477 242523 59000.13 41016.08 1.47 1.98 1.51 0.02
PSO 5714 309591 74578.92 45552.82 1.07 5.7 1.32 0.08
TS 2012 239309 53358.02 38696.08 2.28 3.48 2.58 0.15

80

GA 5022 529708 122254.38 81549.16 1.68 2.08 1.73 0.02
PSO 11053 526278 139817.69 83258.55 1.19 4.81 1.47 0.08
TS 3519 476360 99920.85 71351.20 4.88 8.85 5.85 0.84

100

GA 7847 769645 212492.33 139483.69 1.92 3.26 2.02 0.08
PSO 21055 770606 228850.06 135372.82 1.58 2.66 1.83 0.08
TS 5799 662881 164989.74 117644.92 10.51 24.17 12.04 1.34

120

GA 10336 1201430 326758.10 210294.96 2.20 5.74 2.57 0.22
PSO 33595 1208934 341845.12 198984.65 1.68 5.89 2.21 0.12
TS 6813 1078785 248878.82 175812.08 20.15 124.28 26.32 16.48

140

GA 15823 1621060 464788.80 296045.17 2.73 6.53 3.01 0.12
PSO 43852 1565819 479409.08 276271.35 2.37 5.05 2.62 0.11
TS 10430 1505435 353361.03 248298.74 35.01 311.65 49.01 31.42

160

GA 22374 2075765 624775.70 395411.90 3.14 7.63 3.49 0.17
PSO 65212 2120556 643076.37 369213.60 2.67 4.81 3.02 0.16
TS 14037 1822343 478379.85 335102.18 56.84 11791.01 78.67 152.98

Ahmed-Adnane Abdessemed, Leila-Hayet Mouss, Khaled Benaggoune & Toufik Bentrcia

BizInfo (Blace), 2024, volumen 15, broj 1, str. 1-10 8

Learning phase

Weka machine learning tool (Hall et al., 2009) is used for

classification tasks. Many classification methods were

tested on the meta-data, such as the trees algorithms

(Random Forest, Functional trees …), neural networks

(Multilayer perceptron, RBF Network, ...), and the

classifiers with best accuracy were boosted using the

Dagging algorithm as an ensemble learning technique

(See for more details on the classifiers Fernandez et al.,

2014). The classification results are presented in Table 4.

In general, ensemble learning techniques give the best

results on all metrics (Table 4). The best result was

obtained by the Dagging algorithm combined with

Random Forest, for which accuracy equals to 88.44%,

PRC Area equals to 0.93 and ROC Area equals to 0.96.

Also, the best single classifier was the Functional Tree

(FT), which has accuracy equals to 88.29%, PRC Area

equals to 0.85 and ROC Area equals to 0.91. From the

scheduling point of view, and for the Dagging algorithm

combined with Random Forest case with a TP rate of

0.884, if we have 100 problems that require algorithm A

as the best solution, the likelihood of selecting this

algorithm with our approach is 88 out of 100, which is a

good result regarding the fact that we don’t need to

evaluate all the algorithms.

To clarify our methodology’s impact on a concrete case,

let us consider the example used in a previous section

(section 3.4). We tested each algorithm on the set of ten

instances, and we applied the methodology of algorithm

selection with the best classification model previously

obtained (Dagging (Random Forest)). Table 5 shows a

comparison of experimental results between every single

algorithm and the algorithm selection methodology. On

the total of the ten instances, the algorithm selection

method holds the best average performance metric. In this

example, the proposed framework guarantees finding at

least 80% of the overall best solution.

Table 3. Performance criterion (Y) statistics (The lowest values are written in bold)
N Algo Best Worst Average STD N Algo Best Worst Average STD
 GA 335.82 48838.32 7405.97 5620.49 GA 16312.80 1714905.65 429814.10 283452.60

20 PSO 267.41 44123.20 5988.93 4293.24 100 PSO 37308.12 1412290.31 419585.49 248461.69
 TS 24.85 5364.68 699.29 545.09 TS 63088.63 8777262.37 1986400.23 1441923.24
 GA 1257.04 185898.39 31422.13 22878.59 GA 27488.67 3292784.57 838283.19 545280.53

40 PSO 2391.18 162280.08 35355.88 22499.55 120 PSO 74286.32 2685772.27 754506.09 442545.26
 TS 495.06 101119.51 17623.33 13079.81 TS 140673.19 78521316.15 648270 0.26 6500909.50
 GA 3764.39 367419.41 89291.36 62081.78 GA 46973.10 4812429.82 1399808.71 893292.16

60 PSO 7575.33 426476.50 98480.26 60381.28 140 PSO 112750.87 3944084.54 1256778.98 725562.94
 TS 4854.87 688540.53 137445.30 100027.21 TS 372733.80 252903918.74 17066678.08 17447015.43
 GA 8664.72 920567.53 211951.70 141411.38 GA 77863.32 7695352.81 2178771.95 1382693.26

80 PSO 15997.67 758210.31 205577.75 122842.50 160 PSO 182644.01 6669725.67 1940352.03 1116907.02
 TS 20210.47 3163177.66 583304.76 428615.94 TS 891241.13 8369035749.57 37747485.37 110947476.55

Table 4. Machine learning results.

Algorithm TP Rate FP Rate Precision REcall ROCArea PRCArea Accuracy
WiSARD 0.548 0.188 0.678 0.548 0.776 0.610 54.765
RBFNetwork 0.726 0.183 0.728 0.726 0.879 0.785 72.622
Multilayerperceptron 0.875 0.081 0.875 0.875 0.953 0.915 87.531
RandomForest 0.881 0.077 0.880 0.881 0.960 0.929 88.095
Dagging (LMT) 0.881 0.075 0.881 0.881 0.960 0.929 88.113
Trees.LMT 0.882 0.077 0.882 0.882 0.961 0.931 88.240
Dagging (CSForest) 0.883 0.080 0.882 0.883 0.960 0.931 88.292
FT 0.883 0.077 0.882 0.883 0.917 0.851 88.293
Dagging (FT) 0.883 0.076 0.883 0.883 0.954 0.917 88.327
Dagging (RandomForest) 0.884 0.074 0.884 0.884 0.962 0.934 88.440

Table 5. Algorithm selection on a test set using Dagging (Random Forest), where the bold results reflect the best

outcomes and the underlined entries indicate the false-positive classified instance

N
 GA PSO TS Selected

solution time Y solution time Y solution time Y solution time Y

1 4759.0 1.15 5472.85 5427.00 0.75 4097.07 5005.00 0.12 589.00 5005.00 0.12 589.00

2 32630.0 1.36 44376.80 42646.00 1.13 48278.06 30361.00 0.77 23377.27 30361.00 0.77 23377.27

3 7684.0 1.54 11833.36 10782.00 1.31 14177.14 7213.00 2.69 19405.47 7684.00 1.54 11832.61

4 80431.0 1.50 120804.77 91238.00 1.36 123960.87 77380.00 2.37 183741.45 91238.00 1.36 123960.87

5 170096.0 1.73 294657.33 178025.00 1.45 258080.34 130954.00 4.94 646590.22 170096.00 1.73 294657.33

6 153491.0 1.97 302620.03 142743.00 1.83 261239.47 123892.00 10.90 1350937.62 142743.00 1.83 261239.47

7 347734.0 2.28 792793.03 361824.00 2.08 752971.88 220782.00 79.23 17493034.99 361824.00 2.08 752971.88

8 83771.0 2.97 248708.55 79698.00 2.59 206412.12 64270.00 41.90 269269.,42 79698.00 2.59 206412.12

9 408991.0 2.90 1185175.93 364455.00 2.68 978174.89 278409.00 35.74 9950410.97 364455.00 2.68 978174.89

10 516500.0 3.47 1789907.50 770195.00 3.22 2481827.68 316202.00 60.58 19156977.41 516500.00 3.47 1789907.50

Avr 180608.7 2.09 376892.47 204703.30 1.84 377014.84 125446.80 23.92 3001287.43 176960.40 1.82 321519.73

A machine learning based selection approach for solving the single machine scheduling problem with Early/Tardy jobs

BizInfo (Blace), 2024, Volume 15, Number 1, pp. 1-10 9

5. Conclusions

This work presented a study of meta-heuristic algorithm

selection for the SMSPET based on Rice’s ASP model.

Three meta-heuristics (GA, PSO, TS) were used to build

an algorithm portfolio in the proposed framework, and 10

classifiers were tested for the algorithm selection. A novel

performance metric is also proposed to evaluate each

meta- heuristic performance by combining the running

time and the cost function values. The experiments were

carried on a dataset of 98000 instances characterized by

12 features. The features selection procedure shows that

eight features are sufficient to get satisfying accuracy. The

ensemble learning algorithm Dagging with Random

forests possesses the best accuracy, which is 88.44%, and

for the single machine learning algorithm, the functional

trees have 88.29% accuracy.

This study has shed light on the mandatory requirement of

implementing reliable algorithm selection frameworks,

where additional insights are offered to managers for

solving intractable industrial scheduling problems more

efficiently. In addition, the presented machine learning

results can enable readers to have a general perception of

the behavior of different machine learning algorithms on

the ASP for the SMSPET.

The proposed approach has been applied to a single

machine scheduling problem; however, the steps are

generic and can be extended to other case studies such as

flow shop or job shop problems. The analysis of the data

quality impact on machine learning outcomes and the

adoption of the framework in a distributed environment

such as in cloud computing for selecting the best service

in an online mode are also interesting aspects to be

addressed in the future.

References

Abdul-Razaq, T. S., & Potts, C. N. (1988). Dynamic

programming state-space relaxation for single-machine

scheduling. Journal of the Operational Research

Society, 39(2), 141-152.

https://doi.org/10.1057/jors.1988.26

Baker, K. R., & Martin, J. B. (1974). An experimental

comparison of solution algorithms for the single-

machine tardiness problem. Naval Research Logistics

Quarterly, 21(1), 187-199.

https://doi.org/10.1002/nav.3800210114

Chan, H. K., Yin, S., & Chan, F. T. (2010). Implementing just-

in-time philosophy to reverse logistics systems: a

review. International Journal of Production

Research, 48(21), 6293-6313.

https://doi.org/10.1080/00207540903225213

Chang, P. C., Chen, S. S., & Fan, C. Y. (2008). Mining gene

structures to inject artificial chromosomes for genetic

algorithm in single machine scheduling

problems. Applied Soft Computing, 8(1), 767-777.

https://doi.org/10.1016/j.asoc.2007.06.005.

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer

using particle swarm theory. In MHS'95. Proceedings of

the sixth international symposium on micro machine and

human science (pp. 39-43). IEEE.

https://doi.org/10.1109/MHS.1995.494215

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D.

(2014). Do we need hundreds of classifiers to solve real

world classification problems?. The journal of machine

learning research, 15(1), 3133-3181.

Glover, F. (1989). Tabu search—part I. ORSA Journal on

computing, 1(3), 190-206.

https://doi.org/10.1287/ijoc.1.3.190

Glover, F. (1990). Tabu search: A tutorial. Interfaces, 20(4), 74-

94. https://doi.org/10.1287/inte.20.4.74

Guo, H., & Hsu, W. H. (2007). A machine learning approach to

algorithm selection for NP-hard optimization problems:

a case study on the MPE problem. Annals of Operations

Research, 156(1), 61. https://doi.org/10.1007/s10479-

007-0229-6

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,

& Witten, I. H. (2009). The WEKA data mining

software: an update. ACM SIGKDD explorations

newsletter, 11(1), 10-18.

https://doi.org/10.1145/1656274.1656278

Hao, P., Wang, Z., Wu, G., Boriboonsomsin, K., & Barth, M.

(2017, October). Intra-platoon vehicle sequence

optimization for eco-cooperative adaptive cruise control.

In 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC) (pp. 1-6).

IEEE. https://doi.org/10.1109/ITSC.2017.8317879

Ho, Y. C., & Pepyne, D. L. (2001, December). Simple

explanation of the no free lunch theorem of optimization.

In Proceedings of the 40th IEEE Conference on Decision

and Control (Cat. No. 01CH37228) (Vol. 5, pp. 4409-

4414). IEEE.

https://doi.org/10.1109/CDC.2001.980896.

Holland, J. H. (1992). Adaptation in natural and artificial

systems: an introductory analysis with applications to

biology, control, and artificial intelligence. MIT press.

Kanda, J., Carvalho, A., Hruschka, E., & Soares, C. (2011).

Selection of algorithms to solve traveling salesman

problems using meta-learning. International Journal of

Hybrid Intelligent Systems, 8(3), 117-128.

https://doi.org/10.3233/HIS-2011-0133

Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H.

(2019). Automated algorithm selection: Survey and

perspectives. Evolutionary computation, 27(1), 3-45.

https://doi.org/10.1162/evco_a_00242

Laguna, M., Barnes, J. W., & Glover, F. W. (1991). Tabu search

methods for a single machine scheduling

problem. Journal of Intelligent Manufacturing, 2, 63-73.

https://doi.org/10.1007/BF01471219

Lindauer, M., Hoos, H. H., Hutter, F., & Schaub, T. (2015).

Autofolio: An automatically configured algorithm

selector. Journal of Artificial Intelligence Research, 53,

745-778. https://doi.org/10.1613/jair.4726

M’Hallah, R., & Alhajraf, A. (2016). Ant colony systems for the

single-machine total weighted earliness tardiness

scheduling problem. Journal of Scheduling, 19, 191-205.

https://doi.org/10.1007/s10951-015-0429-x

Messelis, T., & De Causmaecker, P. (2014). An automatic

algorithm selection approach for the multi-mode

resource-constrained project scheduling

problem. European Journal of Operational

Research, 233(3), 511-528.

https://doi.org/10.1016/j.ejor.2013.08.021

Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., &

Hoos, H. (2004). Satzilla: An algorithm portfolio for

SAT. Solver description, SAT competition, 2004.

Ow, P. S., & Morton, T. E. (1989). The single machine

early/tardy problem. Management science, 35(2), 177-

191. https://doi.org/10.1287/mnsc.35.2.177

Pihera, J., & Musliu, N. (2014, November). Application of

machine learning to algorithm selection for TSP. In 2014

IEEE 26th International Conference on Tools with

Artificial Intelligence (pp. 47-54). IEEE.

https://doi.org/10.1109/ICTAI.2014.18

https://doi.org/10.1057/jors.1988.26
https://doi.org/10.1002/nav.3800210114
https://doi.org/10.1080/00207540903225213
https://doi.org/10.1016/j.asoc.2007.06.005
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/inte.20.4.74
https://doi.org/10.1007/s10479-007-0229-6
https://doi.org/10.1007/s10479-007-0229-6
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1109/ITSC.2017.8317879
https://doi.org/10.1109/CDC.2001.980896
https://doi.org/10.3233/HIS-2011-0133
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/BF01471219
https://doi.org/10.1613/jair.4726
https://doi.org/10.1007/s10951-015-0429-x
https://doi.org/10.1016/j.ejor.2013.08.021
https://doi.org/10.1287/mnsc.35.2.177
https://doi.org/10.1109/ICTAI.2014.18

Ahmed-Adnane Abdessemed, Leila-Hayet Mouss, Khaled Benaggoune & Toufik Bentrcia

BizInfo (Blace), 2024, volumen 15, broj 1, str. 1-10 10

Pinedo, M. L. (2012). Scheduling (Vol. 29). New York:

Springer. https://doi.org/10.1007/978-3-319-26580-3

Rice, J. R. (1976). The algorithm selection problem. In Advances

in computers (Vol. 15, pp. 65-118). Elsevier.

https://doi.org/10.1016/S0065-2458(08)60520-3

Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of

machine learning. Springer Science & Business Media.

https://doi.org/10.1007/978-0-387-30164-8

Scott, J., Niemetz, A., Preiner, M., Nejati, S., & Ganesh, V.

(2023). Algorithm selection for SMT: MachSMT:

Machine Learning Driven Algorithm Selection for SMT

Solvers. International Journal on Software Tools for

Technology Transfer, 1-21.

https://doi.org/10.1007/s10009-023-00696-0

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on

meta-learning for algorithm selection. ACM Computing

Surveys (CSUR), 41(1), 1-25.

https://doi.org/10.1145/1456650.1456656

Smith-Miles, K., Baatar, D., Wreford, B., & Lewis, R. (2014).

Towards objective measures of algorithm performance

across instance space. Computers & Operations

Research, 45, 12-24.

https://doi.org/10.1016/j.cor.2013.11.015

Smith-Miles, K., James, R., Giffin, J., & Tu, Y. (2009).

Understanding the relationship between scheduling

problem structure and heuristic performance using

knowledge discovery. Learning and Intelligent

Optimization, LION, 3.

Sourd, F. (2009). New exact algorithms for one-machine

earliness-tardiness scheduling. INFORMS Journal on

Computing, 21(1), 167-175.

https://doi.org/10.1287/ijoc.1080.0287

Sourd, F., & Kedad-Sidhoum, S. (2005). An efficient algorithm

for the earliness-tardiness scheduling

problem. Optimisation Online,(1205).

Tanaka, S., Fujikuma, S., & Araki, M. (2009). An exact

algorithm for single-machine scheduling without

machine idle time. Journal of Scheduling, 12, 575-593.

https://doi.org/10.1007/s10951-008-0093-5

Tasgetiren, M. F., Sevkli, M., Liang, Y. C., & Gençyilmaz, G.

(2004, June). Particle swarm optimization algorithm for

single machine total weighted tardiness problem.

In Proceedings of the 2004 Congress on Evolutionary

Computation (IEEE Cat. No. 04TH8753) (Vol. 2, pp.

1412-1419). IEEE.

https://doi.org/10.1109/CEC.2004.1331062

Tsai, T. I. (2007). A genetic algorithm for solving the single

machine earliness/tardiness problem with distinct due

dates and ready times. The International Journal of

Advanced Manufacturing Technology, 31(9-10), 994-

1000. https://doi.org/10.1007/s00170-005-0261-0

Valente, J. M. (2007). Heuristics for the single machine

scheduling problem with early and quadratic tardy

penalties. European Journal of Industrial

Engineering, 1(4), 431-448.

https://doi.org/10.1504/EJIE.2007.015391

Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., &

Hutter, F. (2018). A case study of algorithm selection for

the traveling thief problem. Journal of Heuristics, 24,

295-320. https://doi.org/10.1007/s10732-017-9328-y

Wan, G., & Yen, B. P. C. (2002). Tabu search for single machine

scheduling with distinct due windows and weighted

earliness/tardiness penalties. European Journal of

Operational Research, 142(2), 271-281.

https://doi.org/10.1016/S0377-2217(01)00302-2

Xu, L., Hutter, F., Shen, J., Hoos, H. H., & Leyton-Brown, K.

(2012). SATzilla2012: Improved algorithm selection

based on cost-sensitive classification

models. Proceedings of SAT Challenge, 57-58.

Yau, H., Pan, Y., & Shi, L. (2008). New solution approaches to

the general single-machine earliness-tardiness

problem. IEEE Transactions on Automation Science and

Engineering, 5(2), 349-360.

https://doi.org/10.1109/TASE.2007.895219

https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1016/j.cor.2013.11.015
https://doi.org/10.1287/ijoc.1080.0287
https://doi.org/10.1007/s10951-008-0093-5
https://doi.org/10.1109/CEC.2004.1331062
https://doi.org/10.1007/s00170-005-0261-0
https://doi.org/10.1504/EJIE.2007.015391
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1016/S0377-2217(01)00302-2
https://doi.org/10.1109/TASE.2007.895219

	Word Bookmarks
	Genetic_Algorithm:
	Particle_Swarm_Optimization:
	Algorithms

