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Today, the algorithm selection paradigm has become one of the promising 

approaches in the field of optimization problems. Its main goal is to solve each case 

of an optimization problem with the most accurate algorithm using machine 

learning techniques. This paper treats the issue of the algorithm selection for the 

Single Machine Scheduling Problem with Early/Tardy jobs by adapting three meta-

heuristics from the state-of-the-art, namely genetic algorithm, particle swarm 

optimization, and tabu search. In the proposed framework, we combine the running 

time and the cost function to get a new performance criterion. A large set composed 

of 98000 instances of the problem is generated with 12 features characterizing each 

instance. We carry a statistical comparison of the implemented meta-heuristics, and 

we evaluate 10 classifiers. It can be deduced that the Dagging algorithm combined 

with the Random Forest is the most likely to be the best classifier, which achieves 

88.44% of the maximum accuracy. 

Keywords: single machine scheduling problem, early/tardy jobs, algorithm 

selection, machine learning, meta-heuristics 

 

S a ž e t a k  
 

Danas je paradigma izbora algoritama jedan od obećavajućih pristupa u oblasti optimizacijskih problema. Njegov glavni cilj je da 

reši svaki slučaj problema optimizacije najtačnijim algoritmom koristeći tehnike mašinskog učenja. Ovaj rad obrađuje pitanje 

izbora algoritma za problem raspoređivanja jedne mašine sa ranim/kasnim zadacima prilagođavanjem tri meta-heuristike iz 

najnovije tehnike, odnosno genetskog algoritma, optimizacije roja čestica i tabu pretraživanja. U predloženom okviru kombinujemo 

vreme rada i funkciju troškova da bismo dobili novi kriterijum učinka. Generiše se veliki skup sastavljen od 98000 instanci problema 

sa 12 karakteristika koje karakterišu svaku instancu. Izvodimo statističko poređenje implementirane metaheuristike i procenjujemo 

10 klasifikatora. Može se zaključiti da je Dagging algoritam u kombinaciji sa Random Forestom najverovatnije najbolji klasifikator, 

koji postiže 88,44% maksimalne tačnosti. 

Ključne reči: problem raspoređivanja jedne mašine, rani/kasni zadaci, izbor algoritma, mašinsko učenje, metaheuristika 

 

 
1. Introduction 

 

Current technological advancements in industrial systems 

have offered a substantial opportunity, which helped the 

boost of the organization’s production ability to meet the 

customer’s expectations such as the delivery date. For this 

reason, most modern production and manufacturing 

systems follow robust and well-defined philosophies 

including flexible manufacturing systems, and just in time 

(Chan et al., 2010). In fact, unpredicted challenges such as 
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the early or late product delivery times do negatively 

affect the total production charges. So, numerous studies 

have been conducted in the literature to remedy this 

problem. The Single Machine Scheduling Problem, 

including Earliness/Tardiness penalties and distinct due 

dates (SMSPET), is amongst the most studied scheduling 

problems with non-regular objective function (Pinedo, 

2012). Such problem belongs to the NP-hard class (see 

(Sourd et al., 2005)) and is typically harder to manipulate 

with respect to problems having regular objective 
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functions (Yau et al., 2008). Despite that several authors 

tried to solve this problem with different methods, there is 

no best algorithm for all configurations of the problem. 

 

The SMSPET can be defined as follows: We consider J a 

set of n jobs to be executed on a single machine, where no 

idle times or job preemptions are permitted. It is also 

assumed that all jobs are ready for processing at t=0. Each 

job i is characterized by: processing time pi, due date di, 

earliness penalty θi if i is terminated before the due date 

and tardiness penalty βi if i is achieved after the due date. 

Hence, the goal is to determine a processing order for the 

elements of J to optimize the total sum of earliness and 

tardiness penalties. If we denote by Ci the completion time 

associated to the job i then the Earliness and the Tardiness 

formulas can be expressed as Ei=max {di − Ci, 0}, and 

Ti=max {Ci − di, 0}, respectively. At this level, the aim is 

to solve the following optimization problem: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝜃𝑖𝐸𝑖 + 𝛽𝑖𝑇𝑖)
𝑛
𝑖=1        (1) 

 

Many authors have attempted to solve this problem based 

on exact methods, starting with the earliest works of 

(Abdul-Razaq et al., 1988), where a dynamic 

programming procedure is presented. Furthermore, two 

branch and bound algorithms have been investigated by 

(Sourd, 2009) for problems in which common and general 

due dates are assumed. In Tanaka et al., (2009), a 

successive sublimation dynamic programming-based 

exact approach is involved for the standard single machine 

scheduling problem. 

 

Exact methods are computationally expensive, yet in most 

real-world cases, they are not quite practical. Exact 

methods ensure locating the ideal arrangement besides its 

optimality for each small size instance of the problem. 

However, the optimal solution cannot always be 

determined in a reasonable time. Hence, the assurance of 

finding an optimal solution can be abandoned for getting 

a generally good solution in polynomial time, and that is 

the goal of approximate algorithms. 

 

Numerous heuristics have been deployed to solve the 

SMSPET, such as the beam search method in (Ow et al., 

1989). A heuristic search was developed by (Sourd et al., 

2005). Besides, simple linear dispatching rules have been 

considered to solve this problem as expressed by Longest 

Processing Time (LPT), Earliest Due Date (EDD), and 

Shortest Processing Time (SPT) rules (Valente, 2007). 

Heuristic algorithms can find feasible solutions in 

polynomial time; however, they cannot explore the total 

solution space. 

 

Meta-heuristics can practically get near-optimal solutions 

in an acceptable time. Many meta-heuristics for the 

SMSPET were proposed in the literature. (Wan et al., 

2002) examined the single machine scheduling problem 

with distinct due windows and weighted 

earliness/tardiness using Tabu Search procedure, 

including an optimal timing algorithm, with problem sizes 

of 15 to 80 jobs. A particle swarm optimization algorithm 

was proposed by (Tasgetiren et al., 2004) to solve the 

single machine problem with total weighted tardiness. 

(Tsai, 2007) proposed a genetic algorithm for solving a 

single machine scheduling problem with Early/Tardy jobs 

and with ready times. In addition, (Chang et al., 2008) 

recommended a genetic algorithm with injecting artificial 

chromosomes for the SMSPET. Ant colony and variable 

neighborhood search-based approaches were suggested in 

(M’Hallah et al., 2016) to solve SMSPET. 

 

It is worth noting that the existence of several algorithms 

to solve the problem may appear as an advantageous 

aspect from a theoretical viewpoint. However, it 

practically yields a drawback in choosing the best 

algorithm among the proposed candidates. Testing all the 

existing algorithms for each new problem in an industrial 

environment is prohibitive in terms of computational 

complexity. Hence, such critical challenge can be stated 

as: ’How to select the more adequate algorithm for a new 

instance of the problem without testing?’. 

 

As claimed by the No-Free Lunch theorem (NFL), the 

assumption that an algorithm outperforms the others in all 

cases needs to be revised. This theorem affirms that no 

algorithm has the best overall performance (Ho et 

al.,2001). However, if we consider that one specific 

algorithm can be used as a solver for a single instance of 

the problem, we are facing an Algorithm Selection 

Problem (ASP). The NFL states that one cannot estimate 

an algorithm’s results relying only on the computational 

complexity. Instead, researchers have focused on 

empirical methods to estimate the best algorithm for every 

instance based on its performance on previously solved 

problems. 

 

To the best of our knowledge, this work showcases an 

original contribution related to the development of reliable 

meta-heuristic selection frameworks for SMSPET, which 

fits well into the industrial needs. Three meta-heuristics 

were deployed to solve the SMSPET. Moreover, a set of 

machine learning algorithms has been tested to find the 

most accurate classifier for this problem. A statistical 

comparison of meta-heuristic results has been conducted, 

aiming to scrutinize each algorithm’s behavior for 

SMSPET. We also try to define a meaningful performance 

metric that is not only adapted to industrial constraints but 

also agrees with the just in time philosophy. Therefore, 

our main objective is to study the impact of the algorithm 

selection technique on the quality of solutions. 

 

The remainder of this paper is organized as follows. In the 

second section, we provide the state of the art related to 

the algorithm selection problem. The third section is 

dedicated to highlighting the elaborated methodology, 

including the description of its different components. 

Section four is devoted to the experimental results and 

discussions, and we end the paper with some conclusions 

and future perspectives in section 5. 

 

2. Background of the algorithm selection problem 

The algorithm selection strategy is widely used in various 

ways to solve different problems. In the following, we 

discuss the theoretical aspect and state of the art related to 

the algorithm selection problem. 
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ASP has been tackled by several research attempts dating 

back to the earliest work of (Rice, 1976) in which he 

formulated the formal abstract model of ASP. The main 

purpose behind the ASP framework is to facilitate the 

selection of the most accurate algorithm from a set of 

algorithms to solve a given instance of a problem by 

maximizing the performance of solutions without 

involving all existing algorithms. Rice model can be stated 

as follows: 

 

Let x ∈P, be a given problem defined with the 

characteristics f (x) ∈F, one must find the selection 

mapping S(f (x)) into algorithm space A, so that the picked 

algorithm α ∈A optimizes a known performance measure 

y(α(x)) ∈Y . where P is the set of problem instances, F is 

the set of characteristics defining the problems; A is the 

set of all the algorithms considered to solve the problem, 

Y is the set of performance measures to be optimized, as 

illustrated in Figure 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Algorithm selection model proposed by Rice 

as reproduced from (Smith-Miles,2009) 
 

 
 
The importance of Rice’s model has notably increased in 

a parallel way with the development of the approximate 

methods of problem resolution, and this has created an 

issue in deciding which one is the best algorithm for every 

single problem. Consequently, researchers started to apply 

this model with different approaches in different fields. In 

the literature, several successful algorithm selection 

applications were published, such as SATzilla2012 (Xu et 

al., 2012) and Autofolio (Lindauer et al., 2015), which 

utilized the empirical hardness models to estimate the best 

algorithm for the SAT problems. Many NP-hard 

optimization problems were solved by different algorithm 

selection approaches. In Table 1, we summarize the core 

research works published in the field. For a detailed 

survey of algorithm selection, the interested reader can 

refer to (Kerschke et al., 2019). 
 

Table 1. Essential works on the algorithm selection problem published in the literature. 

Reference Studied Problem (P) Selected algorithms (A) Learning techniques S(f(x)) 

Nudelman et 

al., 2004 
SAT Problem Heuristics Regression 

Guo et al., 2007 MPE Problem 

Exacts (Clique-Tree Propagation) 

Approximate (Stochastic sampling, 

Hybrid, Search) 

Decision tree Bayesian network 

Smith-Miles et al., 

2009 

Single Machine Scheduling 

Problem (Early/Tardy) 
Heuristics (EDD, SPT) 

Neural Networks, Decision tree, Self-

Organization Maps 

Kandaetal., 2011 
Traveling Salesman Problem 

(TSP) 
Meta-heuristics (TS, GRASP, SA, GA) 

Multi-label classification 

(KNN,DT,SVM,NB) 

Smith-Miles et 

al.,2013 
Graph coloring problem 8 Meta-heuristics Naive Bayes classifier, SVMs 

Pihera et al.,2014 
Traveling Salesman Problem 

(TSP) 
Meta-heuristics (MAOSetLKH) 

Bayesian Network, Decision tree, 

Random Forests, SVM 

Wagneretal., 

2018 

TravelingThief Problem 

(TTP) 
21Heuristics 

Different, well-known algorithm selection 

approaches (Flexfolio, SATzilla, ISAC, 

3S) 

Scott et al., 

2023 

Satisfiability Modulo 

Theories (SMT) 

-23 configurations of the cvc5 

-Bitwuzla, cvc5 andZ3 

AdaBoosting, Multi layer perceptron, 

linear ridge regressio 

Kerschkeetal., 

2019 
Survey - - 

 

Due to the scarce references in the literature regarding the 

algorithm selection theory on the SMSPET, only very few 

papers can be found, for instance, the work of (Smith-

Miles et al., 2009). They applied the ASP using the Meta-

learning approach. The aforementioned study is limited to 

only two heuristics, EDD and SPT, and its aim was to 

understand the connection between the scheduling 

problem configuration and the heuristic efficiency. In 

practice, heuristic methods are restricted in the sense of 

generating only admissible solutions. In contrast, the 
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algorithm selection will be more complex using meta-

heuristic algorithms. 

 

 

 

 

 

3. Methodology 

 

In this section, we explain in detail how we can adapt 

Rice’s model to select the best meta-heuristic for the 

SMSPET. Figure 2 describes the principal components of 

the proposed framework. 

 

Figure 2. Illustration of the proposed methodology 

 
 

To adjust Rice’s model within the context of our study, we 

proceed in the following steps. We start by generating a 

set of instances of SMSPET (problem instances space 

(P)), then we calculate the features for each instance 

(features space (F)). After that, we have to create an 

algorithm portfolio of meta-heuristics (algorithm space 

(A)) and define a performance measure (Y) to compare the 

algorithms. Machine learning algorithms are used to 

determine the selection mapping S(F(x)), which can be 

seen as a multi-class classification problem. 

 

3.1. Instances generation 

 

One of the most critical steps in this study is obtaining a 

large dataset representative of real-world problems. The 

existing benchmarks are not large enough to fit within the 

context of our study. Therefore, a dataset of 98000 

instances is generated according to the following rules 

defined in (Sourd et al., 2005): 

− Number of tasks (N): N ∈ {20, 40, 60, 80, 100, 120, 

140, 160}; 

− Processing Time (pi): Generated randomly from a 

uniform distribution of the interval U [10, 100]; 

− Due dates (di): For each task, a random due date is 

generated from the uniform distribution: 

U[dmin,dmin+ρ(somm(pi))] where 

dmin=max(0,(somm(pi))(τ −ρ/2)), τ denotes the delay 

parameter and ρ the parameter of the row of times; 

− We take the parameters τ and ρ from the following 

intervals: 

τ ∈{0.2, 0.3,0.4,0.5,0.6,0.7,0.8}, ρ ∈ 

{0.2,0.3,0.4,0.5,0.6,0.7,0.8}; 

− Each time 25 problems are created. 
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3.2 Features definition 

 

The following features can characterize every instance of 

the SMSPET. The first six features were used in (Smith-

miles et al., 2009), and we propose six additional features 

in the context of our study as follows: 

− Number of jobs N assigned to the instance; 

− Mean Processing Time 𝑃̅: The average processing 

time of all jobs in a given instance; 

− Processing Time Range pσ: The range of all jobs’ 

processing time in the instance; 

− Tardiness Factor τ: In (Baker et al.,1974), the tardiness 

factor τ of a problem is defined as a coarse measure of 

the ratio of jobs, which are estimated to be tardy in an 

arbitrary sequence. This feature is given by 𝜏 = 1 −
Σ𝑑𝑖

𝑛Σ𝑝𝑖
; 

− Due Date Range Dσ: Defines the deviation of the due 

dates from the average due date for all jobs in the 

instance. It is designated by 𝐷𝜎 =
(𝑏−𝑎)

Σ𝑝𝑖
, where b 

indicates the maximum due date in the instance and a 

stand for the minimum due date in the instance; 

− Penalty Ratio ρ: The maximum ratio of the tardy 

penalty to the early penalty over all jobs in the 

instance; 

− MaxPi: the maximum processing time in the instance; 

− MinPi: the minimum processing time in the instance; 

− MaxEP: the maximum earliness penalty; 

− MaxTP: the maximum tardiness penalty; 

− PinmoyE: the mean earliness penalty; 

− PinmoyT: the mean tardiness penalty. 

 

The Correlation Attribute Evaluator (built-in Weka) is 

used to rank the features in terms of their correlation with 

the best algorithm. The features have been ranked as 

follows: (N, Drange, Pratio, MaxEP, MaxTP, Tfact, 

MinPi, Prange, MaxPi, PinmoyT, Pmoy, PinmoyE). 

 

3.3. Meta-heuristics description 

 

To solve SMSPET, we create a portfolio of algorithms 

from different types, namely population-based, swarm-

based, and neighborhood search-based meta-heuristics. 

The algorithms used in this research are adapted from the 

state-of-the-art. In the following, we present a concise 

description of the algorithms used in this study. 

 

Genetic Algorithm: The genetic algorithm (GA) is a 

population-based meta-heuristic originally developed by 

(Holland et al.,1992), where the population is composed 

of several chromosomes. Each chromosome is a set of 

genes. In our problem, every gene is a job to be run on the 

machine, and a chromosome represents a feasible 

solution, which is a sequence of jobs. The efficiency of 

good exploitation and exploration of the solution space 

has been proven using the genetic operators such as the 

crossover and the mutation operators. A standard GA is 

illustrated in Figure 3.A. In this paper the GA proposed in 

(Tasi, 2007) is adapted to solve the SMSPET problem. 

 

The initial population is generated using some heuristic 

rules to accelerate the convergence of the algorithm. In 

this work, we create an initial population as follows: 

− Sort tasks in ascending order of the execution time 

(SPT); 

− Sort tasks in ascending order of the due date (EDD); 

− Sort tasks in ascending order of the earliness penalty θi; 

− Sort tasks in ascending order of the tardiness penalty βi; 

− The rest of chromosomes are generated randomly. 

 

Figure 3. Standard representation of the metaheuristic’s flowcharts 
Figure 3.A. GA. Figure 3.B. PSO Figure 3.C. TS (Hao et al., 2017) 

 

  

Tabu Search: The tabu search (TS) is a neighborhood 

search method, based on the hill-climbing algorithm with 

several steps directions (Laguna et al., 1991). The TS 

initially proposed in (Glover, 1989) and (Glover, 1990), is 

designed to avoid the local optima. By allowing moves 

from the current solution r to its best neighborhood 

solution r1 even if r is better than r1, with the condition 

that this solution is not in the tabu list. In this work, we 

adapt the TS proposed in (Wan et al., 2002) to the 

SMSPET. The TS starts from an initial solution r0, which 

can be generated using a simple heuristic such as EDD, 

and iteratively moves from this solution to its best 

neighbor generated by exchanging positions of jobs. TS is 

presented in Figure 3.C. 
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Particle Swarm Optimization: PSO is an optimization 

algorithm, inspired by the social behavior of flock of birds 

or school of fish. A swarm of particles simultaneously 

explores a problem’s search space with the objective of 

finding the global optimum configuration. The original 

PSO was proposed by Eberhart and Kennedy (Eberhart et 

al.,1995) to optimize continuous functions. In this paper, 

the PSO proposed in (Tasgetiren et al., 2004) is adapted to 

fit the SMSPET. To enable the continuous PSO solving 

the SMSPET, we use a heuristic rule called Smallest 

Position Value (SPV). The PSO algorithm is presented in 

Figure 3.B. 

 

3.4. Performance definition 

 

To define the best algorithm among a set of candidate 

algorithms, one should ask the following question, ‛How 

to compare many algorithms?’. The intuitive answer is to 

compare algorithms based on their best cost function 

values. However, in practice, the running time is an 

important factor which cannot be neglected. In some 

cases, the algorithm can find a good solution in a large 

running time, one can sacrifice the quality of solution for 

good running time. To clarify this aspect let us consider 

for example 10 instances randomly selected from our 

dataset, and try to solve them using GA, PSO, and TS. 

Figure 4 shows a bar plot of the best cost function and the 

running time obtained by each of these algorithms. 

 

Figure 4. Illustrative example for the compromise 

between the cost function and the execution time 

 
 

In the seventh instance, we notice that the TS has found 

the best solution, but the running time was extremely large 

compared to the other algorithms. However, for the eighth 

instance there is a small difference between the solutions 

obtained by these three algorithms, but the running time 

of the TS is too large compared with GA and PSO. So, if 

we have to privilege one of these algorithms over its 

counterparts, one should consider jointly the running time 

and the cost function. Consequently, we propose as an 

evaluation measure the product of the running time by the 

cost function value, as the objective is to minimize both of 

the aforementioned criteria. 

 

Let Obj(α) be the best penalty obtained by the algorithm 

α and T (α) be the time needed to solve the given instance; 

our objective is to select the algorithm which has the 

minimum performance Y (α) = (Obj(α) × T (α)). 

 

 

3.5 Algorithm prediction 

 

After getting the algorithms results, we define the best 

algorithm by comparing the algorithm results for all 

instances. A single integer variable represents the best 

algorithm. Let bestm= 1 if GA is the best algorithm, bestm= 

2 if PSO is the best algorithm, and bestm= 3 if TS is the 

best algorithm for the instance m. Every sample of the 

meta-data is a vector of features labeled by the value of 

the variable bestm. 

 

The selection mapping s(f (x)) which associates for each 

set of features from F an algorithm α from A, is a learning 

problem (see Smith-Miles et al., 2009). Therefore, a 

classification model is built using machine learning 

algorithms on the meta-data. This model is used to predict 

the best algorithm for new incoming data based on the 

previously solved instances. A variety of machine 

learning algorithms have been tested; such as decision 

trees, neural networks, and ensemble learning algorithms. 

The classification model is validated by the ten-fold cross-

validation process. (For more details on the evaluation 

metrics, the interested reader may refer to (Sammut et al., 

2011)). 

 

4. Computational results 

 

In this section, we elucidate the main outcomes of the 

conducted numerical experiments and we provide some 

remarks and discussions. 
 

Algorithms 
 

All the algorithms used in this study were implemented 

and tested in MATLAB using a computer with the 

following features: Intel(R) Core (TM) i5-2430M CPU @ 

2.40GHz and RAM = 6,00GB. Due to the high 

computational costs, we choose a small size population, 

and we run the algorithms with the same number of 

iterations. 
 

Meta-heuristics results and competitiveness 
 

In order to evaluate the modified meta-heuristics adopted 

in this paper, the algorithms are tested based on the 

benchmark used in (Tanaka et al., 2009). The investigated 

meta-heuristics are evaluated and compared on 

benchmark instances of size N=40, by computing the 

mean deviation from the optimal solution. The results are 

presented in Figure 5. Also, a competitiveness evaluation 

is performed to verify the efficiency of the proposed 

algorithm selection process. We qualify a set of 

algorithms as competitive when each algorithm surpasses 

the remaining ones on a subset of instances while being 

surpassed by at least another algorithm on the rest of 

instances, and these subsets are large enough. The 

competitiveness ratio Com is defined in (Messelis et 

al.,2014) as 
 

Com = 2min (|A|/|T |, |B|/|T |) (2) 
 

where, A stands for the ensemble of instances on which 

algorithm A exhibits better performance than algorithm 

B, and B denotes the ensemble of instances on which 

algorithm B do better than algorithm A, and T is the total 
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set of instances. In the case of three algorithms Com can 

be defined as, 
 

Com = 3min (|A|/|T |, |B|/|T |, |C|/|T |)     (3) 
 

The closer Com is to 1, the more the competitiveness of 

the algorithms is verified to each other. In the proposed 

framework the competitiveness factor equals to: 

 

The closer Com is to 1, the more the competitiveness of 

the algorithms is verified to each other. In the proposed 

framework the competitiveness factor equals to: 

 

3min (28384/98000, 45106/98000, 24510/98000) = 0.75 

 

which shows that the algorithms are sufficiently 

competitive, and the algorithm selection is useful. 

 

Figure 5. Mean deviations of each algorithm from the 

optimal solution on instances with n=40 

 
 

Discussion of the algorithms results 

 

After running the proposed algorithms on the whole 

dataset, we categorize the obtained results by problem size 

(number of jobs). For each category, we have computed 

the Average measure provided in (9) and the standard 

deviation STD  given in (10) of the solutions obtained by 

each algorithm over all the instances in the category, and 

we consider the best and the worst solutions for every 

category. The statistical results are classified in the 

following tables, where Table 2 shows the cost function 

and the running  time results, and in Table 3, we depict the 

results of the proposed performance criterion Y . 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁𝑏𝑖𝑛𝑠
∑ 𝑠𝑜𝑙𝑟
𝑁𝑏𝑖𝑛𝑠
𝑟=1    (4)                                              

𝑆𝑇𝐷 = √
1

𝑁𝑏𝑖𝑛𝑠
∑ (𝑠𝑜𝑙𝑟 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)²𝑛𝑏𝑖𝑛𝑠
𝑟=1   (5) 

 

where Nbins is the total number of instances in the 

category, solr is the solution obtained for the instance r. 

 

The analysis of the statistical results leads to the following 

remarks: 

− The PSO algorithm is the fastest algorithm among the 

algorithms set; 

− The TS algorithm provides excellent results on the 

small instances. Whereas, the running time is too large 

in large instances; 

− GA generally has good results and an average running 

time; 

− These results agree with the NFL theorem, so there is 

no best algorithm over all the algorithms used to solve 

the SMSPET; 

− Let us consider a medium-size category of problems 

(N=100). If the best algorithm selection is decided 

according to the cost function value, the best algorithm 

is TS with the lowest average cost function. 

Nevertheless, the average running time of TS is six 

times larger than the PSO’s average running time. This 

problem occurs in most categories. 

 

The overview given by the statistical analysis is not 

satisfactory enough to help in algorithm selection. 

Therefore, our research is consolidated by using machine 

learning techniques to estimate the best algorithm for 

every instance. 

 

Table 2. Cost function and running time statistics (The lowest values are written in bold) 
 

N 
 Cost function Running time 

Algorithm Best Worst Average STD Best Worst Average STD 

20 

GA 279 40266 6267.14 4692.24 1.08 5.26 1.18 0.09 
PSO 341 40906 7189.24 5002.34 0.75 6.39 0.84 0.19 
TS 276 40300 6230.47 4695.21 0.08 0.44 0.11 0.02 

40 

GA 973 142729 23504.61 17010.74 1.26 3.20 1.34 0.09 
PSO 2110 147874 30961.07 19652.33 0.99 1.82 1.14 0.05 
TS 694 142263 22979.44 16960.21 0.58 2.25 0.77 0.05 

60 

GA 2477 242523 59000.13 41016.08 1.47 1.98 1.51 0.02 
PSO 5714 309591 74578.92 45552.82 1.07 5.7 1.32 0.08 
TS 2012 239309 53358.02 38696.08 2.28 3.48 2.58 0.15 

80 

GA 5022 529708 122254.38 81549.16 1.68 2.08 1.73 0.02 
PSO 11053 526278 139817.69 83258.55 1.19 4.81 1.47 0.08 
TS 3519 476360 99920.85 71351.20 4.88 8.85 5.85 0.84 

100 

GA 7847 769645 212492.33 139483.69 1.92 3.26 2.02 0.08 
PSO 21055 770606 228850.06 135372.82 1.58 2.66 1.83 0.08 
TS 5799 662881 164989.74 117644.92 10.51 24.17 12.04 1.34 

120 

GA 10336 1201430 326758.10 210294.96 2.20 5.74 2.57 0.22 
PSO 33595 1208934 341845.12 198984.65 1.68 5.89 2.21 0.12 
TS 6813 1078785 248878.82 175812.08 20.15 124.28 26.32 16.48 

140 

GA 15823 1621060 464788.80 296045.17 2.73 6.53 3.01 0.12 
PSO 43852 1565819 479409.08 276271.35 2.37 5.05 2.62 0.11 
TS 10430 1505435 353361.03 248298.74 35.01 311.65 49.01 31.42 

160 

GA 22374 2075765 624775.70 395411.90 3.14 7.63 3.49 0.17 
PSO 65212 2120556 643076.37 369213.60 2.67 4.81 3.02 0.16 
TS 14037 1822343 478379.85 335102.18 56.84 11791.01 78.67 152.98 
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Learning phase 

 

Weka machine learning tool (Hall et al., 2009) is used for 

classification tasks. Many classification methods were 

tested on the meta-data, such as the trees algorithms 

(Random Forest, Functional trees …), neural networks 

(Multilayer perceptron, RBF Network, ...), and the 

classifiers with best accuracy were boosted using the 

Dagging algorithm as an ensemble learning technique 

(See for more details on the classifiers Fernandez et al., 

2014). The classification results are presented in Table 4. 

 

In general, ensemble learning techniques give the best 

results on all metrics (Table 4). The best result was 

obtained by the Dagging algorithm combined with 

Random Forest, for which accuracy equals to 88.44%, 

PRC Area equals to 0.93 and ROC Area equals to 0.96. 

Also, the best single classifier was the Functional Tree 

(FT), which has accuracy equals to 88.29%, PRC Area 

equals to 0.85 and ROC Area equals to 0.91. From the 

scheduling point of view, and for the Dagging algorithm 

combined with Random Forest case with a TP rate of 

0.884, if we have 100 problems that require algorithm A 

as the best solution, the likelihood of selecting this 

algorithm with our approach is 88 out of 100, which is a 

good result regarding the fact that we don’t need to 

evaluate all the algorithms. 
 

To clarify our methodology’s impact on a concrete case, 

let us consider the example used in a previous section 

(section 3.4). We tested each algorithm on the set of ten 

instances, and we applied the methodology of algorithm 

selection with the best classification model previously 

obtained (Dagging (Random Forest)). Table 5 shows a 

comparison of experimental results between every single 

algorithm and the algorithm selection methodology. On 

the total of the ten instances, the algorithm selection 

method holds the best average performance metric. In this 

example, the proposed framework guarantees finding at 

least 80% of the overall best solution. 

 

 

 

Table 3. Performance criterion (Y) statistics (The lowest values are written in bold) 
N Algo Best Worst Average STD N Algo Best Worst Average STD 
 GA 335.82 48838.32 7405.97 5620.49  GA 16312.80 1714905.65 429814.10 283452.60 

20 PSO 267.41 44123.20 5988.93 4293.24 100 PSO 37308.12 1412290.31 419585.49 248461.69 
 TS 24.85 5364.68 699.29 545.09  TS 63088.63 8777262.37 1986400.23 1441923.24 
 GA 1257.04 185898.39 31422.13 22878.59  GA 27488.67 3292784.57 838283.19 545280.53 

40 PSO 2391.18 162280.08 35355.88 22499.55 120 PSO 74286.32 2685772.27 754506.09 442545.26 
 TS 495.06 101119.51 17623.33 13079.81  TS 140673.19 78521316.15 648270 0.26 6500909.50 
 GA 3764.39 367419.41 89291.36 62081.78  GA 46973.10 4812429.82 1399808.71 893292.16 

60 PSO 7575.33 426476.50 98480.26 60381.28 140 PSO 112750.87 3944084.54 1256778.98 725562.94 
 TS 4854.87 688540.53 137445.30 100027.21  TS 372733.80 252903918.74 17066678.08 17447015.43 
 GA 8664.72 920567.53 211951.70 141411.38  GA 77863.32 7695352.81 2178771.95 1382693.26 

80 PSO 15997.67 758210.31 205577.75 122842.50 160 PSO 182644.01 6669725.67 1940352.03 1116907.02 
 TS 20210.47 3163177.66 583304.76 428615.94  TS 891241.13 8369035749.57 37747485.37 110947476.55 

 

Table 4. Machine learning results. 

Algorithm TP Rate FP Rate Precision REcall ROCArea PRCArea Accuracy 
WiSARD 0.548 0.188 0.678 0.548 0.776 0.610 54.765 
RBFNetwork 0.726 0.183 0.728 0.726 0.879 0.785 72.622 
Multilayerperceptron 0.875 0.081 0.875 0.875 0.953 0.915 87.531 
RandomForest 0.881 0.077 0.880 0.881 0.960 0.929 88.095 
Dagging (LMT) 0.881 0.075 0.881 0.881 0.960 0.929 88.113 
Trees.LMT 0.882 0.077 0.882 0.882 0.961 0.931 88.240 
Dagging (CSForest) 0.883 0.080 0.882 0.883 0.960 0.931 88.292 
FT 0.883 0.077 0.882 0.883 0.917 0.851 88.293 
Dagging (FT) 0.883 0.076 0.883 0.883 0.954 0.917 88.327 
Dagging (RandomForest) 0.884 0.074 0.884 0.884 0.962 0.934 88.440 

 

Table 5. Algorithm selection on a test set using Dagging (Random Forest), where the bold results reflect the best 

outcomes and the underlined entries indicate the false-positive classified instance 

N 
 GA   PSO   TS   Selected  

solution time Y solution time Y solution time Y solution time Y 

1 4759.0 1.15 5472.85 5427.00 0.75 4097.07 5005.00 0.12 589.00 5005.00 0.12 589.00 

2 32630.0 1.36 44376.80 42646.00 1.13 48278.06 30361.00 0.77 23377.27 30361.00 0.77 23377.27 

3 7684.0 1.54 11833.36 10782.00 1.31 14177.14 7213.00 2.69 19405.47 7684.00 1.54 11832.61 

4 80431.0 1.50 120804.77 91238.00 1.36 123960.87 77380.00 2.37 183741.45 91238.00 1.36 123960.87 

5 170096.0 1.73 294657.33 178025.00 1.45 258080.34 130954.00 4.94 646590.22 170096.00 1.73 294657.33 

6 153491.0 1.97 302620.03 142743.00 1.83 261239.47 123892.00 10.90 1350937.62 142743.00 1.83 261239.47 

7 347734.0 2.28 792793.03 361824.00 2.08 752971.88 220782.00 79.23 17493034.99 361824.00 2.08 752971.88 

8 83771.0 2.97 248708.55 79698.00 2.59 206412.12 64270.00 41.90 269269.,42 79698.00 2.59 206412.12 

9 408991.0 2.90 1185175.93 364455.00 2.68 978174.89 278409.00 35.74 9950410.97 364455.00 2.68 978174.89 

10 516500.0 3.47 1789907.50 770195.00 3.22 2481827.68 316202.00 60.58 19156977.41 516500.00 3.47 1789907.50 

Avr 180608.7 2.09 376892.47 204703.30 1.84 377014.84 125446.80 23.92 3001287.43 176960.40 1.82 321519.73 
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5. Conclusions 

 

This work presented a study of meta-heuristic algorithm 

selection for the SMSPET based on Rice’s ASP model. 

Three meta-heuristics (GA, PSO, TS) were used to build 

an algorithm portfolio in the proposed framework, and 10 

classifiers were tested for the algorithm selection. A novel 

performance metric is also proposed to evaluate each 

meta- heuristic performance by combining the running 

time and the cost function values. The experiments were 

carried on a dataset of 98000 instances characterized by 

12 features. The features selection procedure shows that 

eight features are sufficient to get satisfying accuracy. The 

ensemble learning algorithm Dagging with Random 

forests possesses the best accuracy, which is 88.44%, and 

for the single machine learning algorithm, the functional 

trees have 88.29% accuracy. 

 

This study has shed light on the mandatory requirement of 

implementing reliable algorithm selection frameworks, 

where additional insights are offered to managers for 

solving intractable industrial scheduling problems more 

efficiently. In addition, the presented machine learning 

results can enable readers to have a general perception of 

the behavior of different machine learning algorithms on 

the ASP for the SMSPET. 

 

The proposed approach has been applied to a single 

machine scheduling problem; however, the steps are 

generic and can be extended to other case studies such as 

flow shop or job shop problems. The analysis of the data 

quality impact on machine learning outcomes and the 

adoption of the framework in a distributed environment 

such as in cloud computing for selecting the best service 

in an online mode are also interesting aspects to be 

addressed in the future. 

 

References 
 

Abdul-Razaq, T. S., & Potts, C. N. (1988). Dynamic 

programming state-space relaxation for single-machine 

scheduling. Journal of the Operational Research 

Society, 39(2), 141-152. 

https://doi.org/10.1057/jors.1988.26 

Baker, K. R., & Martin, J. B. (1974). An experimental 

comparison of solution algorithms for the single-

machine tardiness problem. Naval Research Logistics 

Quarterly, 21(1), 187-199. 

https://doi.org/10.1002/nav.3800210114 

Chan, H. K., Yin, S., & Chan, F. T. (2010). Implementing just-

in-time philosophy to reverse logistics systems: a 

review. International Journal of Production 

Research, 48(21), 6293-6313. 

https://doi.org/10.1080/00207540903225213 

Chang, P. C., Chen, S. S., & Fan, C. Y. (2008). Mining gene 

structures to inject artificial chromosomes for genetic 

algorithm in single machine scheduling 

problems. Applied Soft Computing, 8(1), 767-777. 

https://doi.org/10.1016/j.asoc.2007.06.005. 

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer 

using particle swarm theory. In MHS'95. Proceedings of 

the sixth international symposium on micro machine and 

human science (pp. 39-43). IEEE. 

https://doi.org/10.1109/MHS.1995.494215 

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. 

(2014). Do we need hundreds of classifiers to solve real 

world classification problems?. The journal of machine 

learning research, 15(1), 3133-3181. 

Glover, F. (1989). Tabu search—part I. ORSA Journal on 

computing, 1(3), 190-206. 

https://doi.org/10.1287/ijoc.1.3.190 

Glover, F. (1990). Tabu search: A tutorial. Interfaces, 20(4), 74-

94. https://doi.org/10.1287/inte.20.4.74 

Guo, H., & Hsu, W. H. (2007). A machine learning approach to 

algorithm selection for NP-hard optimization problems: 

a case study on the MPE problem. Annals of Operations 

Research, 156(1), 61. https://doi.org/10.1007/s10479-

007-0229-6 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., 

& Witten, I. H. (2009). The WEKA data mining 

software: an update. ACM SIGKDD explorations 

newsletter, 11(1), 10-18. 

https://doi.org/10.1145/1656274.1656278 

Hao, P., Wang, Z., Wu, G., Boriboonsomsin, K., & Barth, M. 

(2017, October). Intra-platoon vehicle sequence 

optimization for eco-cooperative adaptive cruise control. 

In 2017 IEEE 20th International Conference on 

Intelligent Transportation Systems (ITSC) (pp. 1-6). 

IEEE. https://doi.org/10.1109/ITSC.2017.8317879 

Ho, Y. C., & Pepyne, D. L. (2001, December). Simple 

explanation of the no free lunch theorem of optimization. 

In Proceedings of the 40th IEEE Conference on Decision 

and Control (Cat. No. 01CH37228) (Vol. 5, pp. 4409-

4414). IEEE. 

https://doi.org/10.1109/CDC.2001.980896. 

Holland, J. H. (1992). Adaptation in natural and artificial 

systems: an introductory analysis with applications to 

biology, control, and artificial intelligence. MIT press. 

Kanda, J., Carvalho, A., Hruschka, E., & Soares, C. (2011). 

Selection of algorithms to solve traveling salesman 

problems using meta-learning. International Journal of 

Hybrid Intelligent Systems, 8(3), 117-128. 

https://doi.org/10.3233/HIS-2011-0133 

Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. 

(2019). Automated algorithm selection: Survey and 

perspectives. Evolutionary computation, 27(1), 3-45. 

https://doi.org/10.1162/evco_a_00242 

Laguna, M., Barnes, J. W., & Glover, F. W. (1991). Tabu search 

methods for a single machine scheduling 

problem. Journal of Intelligent Manufacturing, 2, 63-73. 

https://doi.org/10.1007/BF01471219 

Lindauer, M., Hoos, H. H., Hutter, F., & Schaub, T. (2015). 

Autofolio: An automatically configured algorithm 

selector. Journal of Artificial Intelligence Research, 53, 

745-778. https://doi.org/10.1613/jair.4726 

M’Hallah, R., & Alhajraf, A. (2016). Ant colony systems for the 

single-machine total weighted earliness tardiness 

scheduling problem. Journal of Scheduling, 19, 191-205. 

https://doi.org/10.1007/s10951-015-0429-x 

Messelis, T., & De Causmaecker, P. (2014). An automatic 

algorithm selection approach for the multi-mode 

resource-constrained project scheduling 

problem. European Journal of Operational 

Research, 233(3), 511-528. 

https://doi.org/10.1016/j.ejor.2013.08.021 

Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., & 

Hoos, H. (2004). Satzilla: An algorithm portfolio for 

SAT. Solver description, SAT competition, 2004. 

Ow, P. S., & Morton, T. E. (1989). The single machine 

early/tardy problem. Management science, 35(2), 177-

191. https://doi.org/10.1287/mnsc.35.2.177 

Pihera, J., & Musliu, N. (2014, November). Application of 

machine learning to algorithm selection for TSP. In 2014 

IEEE 26th International Conference on Tools with 

Artificial Intelligence (pp. 47-54). IEEE. 

https://doi.org/10.1109/ICTAI.2014.18 

https://doi.org/10.1057/jors.1988.26
https://doi.org/10.1002/nav.3800210114
https://doi.org/10.1080/00207540903225213
https://doi.org/10.1016/j.asoc.2007.06.005
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/inte.20.4.74
https://doi.org/10.1007/s10479-007-0229-6
https://doi.org/10.1007/s10479-007-0229-6
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1109/ITSC.2017.8317879
https://doi.org/10.1109/CDC.2001.980896
https://doi.org/10.3233/HIS-2011-0133
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/BF01471219
https://doi.org/10.1613/jair.4726
https://doi.org/10.1007/s10951-015-0429-x
https://doi.org/10.1016/j.ejor.2013.08.021
https://doi.org/10.1287/mnsc.35.2.177
https://doi.org/10.1109/ICTAI.2014.18


Ahmed-Adnane Abdessemed, Leila-Hayet Mouss, Khaled Benaggoune & Toufik Bentrcia 

BizInfo (Blace), 2024, volumen 15, broj 1, str. 1-10 10 

Pinedo, M. L. (2012). Scheduling (Vol. 29). New York: 

Springer. https://doi.org/10.1007/978-3-319-26580-3 

Rice, J. R. (1976). The algorithm selection problem. In Advances 

in computers (Vol. 15, pp. 65-118). Elsevier. 

https://doi.org/10.1016/S0065-2458(08)60520-3 

Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of 

machine learning. Springer Science & Business Media. 

https://doi.org/10.1007/978-0-387-30164-8 

Scott, J., Niemetz, A., Preiner, M., Nejati, S., & Ganesh, V. 

(2023). Algorithm selection for SMT: MachSMT: 

Machine Learning Driven Algorithm Selection for SMT 

Solvers. International Journal on Software Tools for 

Technology Transfer, 1-21. 

https://doi.org/10.1007/s10009-023-00696-0 

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on 

meta-learning for algorithm selection. ACM Computing 

Surveys (CSUR), 41(1), 1-25. 

https://doi.org/10.1145/1456650.1456656 

Smith-Miles, K., Baatar, D., Wreford, B., & Lewis, R. (2014). 

Towards objective measures of algorithm performance 

across instance space. Computers & Operations 

Research, 45, 12-24. 

https://doi.org/10.1016/j.cor.2013.11.015 

Smith-Miles, K., James, R., Giffin, J., & Tu, Y. (2009). 

Understanding the relationship between scheduling 

problem structure and heuristic performance using 

knowledge discovery. Learning and Intelligent 

Optimization, LION, 3. 

Sourd, F. (2009). New exact algorithms for one-machine 

earliness-tardiness scheduling. INFORMS Journal on 

Computing, 21(1), 167-175. 

https://doi.org/10.1287/ijoc.1080.0287 

Sourd, F., & Kedad-Sidhoum, S. (2005). An efficient algorithm 

for the earliness-tardiness scheduling 

problem. Optimisation Online,(1205). 

Tanaka, S., Fujikuma, S., & Araki, M. (2009). An exact 

algorithm for single-machine scheduling without 

machine idle time. Journal of Scheduling, 12, 575-593. 

https://doi.org/10.1007/s10951-008-0093-5 

Tasgetiren, M. F., Sevkli, M., Liang, Y. C., & Gençyilmaz, G. 

(2004, June). Particle swarm optimization algorithm for 

single machine total weighted tardiness problem. 

In Proceedings of the 2004 Congress on Evolutionary 

Computation (IEEE Cat. No. 04TH8753) (Vol. 2, pp. 

1412-1419). IEEE. 

https://doi.org/10.1109/CEC.2004.1331062 

Tsai, T. I. (2007). A genetic algorithm for solving the single 

machine earliness/tardiness problem with distinct due 

dates and ready times. The International Journal of 

Advanced Manufacturing Technology, 31(9-10), 994-

1000. https://doi.org/10.1007/s00170-005-0261-0 

Valente, J. M. (2007). Heuristics for the single machine 

scheduling problem with early and quadratic tardy 

penalties. European Journal of Industrial 

Engineering, 1(4), 431-448. 

https://doi.org/10.1504/EJIE.2007.015391 

Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., & 

Hutter, F. (2018). A case study of algorithm selection for 

the traveling thief problem. Journal of Heuristics, 24, 

295-320. https://doi.org/10.1007/s10732-017-9328-y 

Wan, G., & Yen, B. P. C. (2002). Tabu search for single machine 

scheduling with distinct due windows and weighted 

earliness/tardiness penalties. European Journal of 

Operational Research, 142(2), 271-281. 

https://doi.org/10.1016/S0377-2217(01)00302-2 

Xu, L., Hutter, F., Shen, J., Hoos, H. H., & Leyton-Brown, K. 

(2012). SATzilla2012: Improved algorithm selection 

based on cost-sensitive classification 

models. Proceedings of SAT Challenge, 57-58. 

Yau, H., Pan, Y., & Shi, L. (2008). New solution approaches to 

the general single-machine earliness-tardiness 

problem. IEEE Transactions on Automation Science and 

Engineering, 5(2), 349-360. 

https://doi.org/10.1109/TASE.2007.895219

 

 

 

 

 

https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1016/j.cor.2013.11.015
https://doi.org/10.1287/ijoc.1080.0287
https://doi.org/10.1007/s10951-008-0093-5
https://doi.org/10.1109/CEC.2004.1331062
https://doi.org/10.1007/s00170-005-0261-0
https://doi.org/10.1504/EJIE.2007.015391
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1016/S0377-2217(01)00302-2
https://doi.org/10.1109/TASE.2007.895219

	Word Bookmarks
	Genetic_Algorithm:
	Particle_Swarm_Optimization:
	Algorithms


