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On Relations Between Inverse Sum Indeg Index and
Multiplicative Sum Zagreb Index

M. M. Matejić, E. I. Milovanović, I. Ž. Milovanović

Abstract: In this paper we derive some lower and upper bounds for the inverse sum indeg
index, ISI = ∑i∼ j

did j
di+d j

, in terms of graph invariants F = ∑n
i=1 d3

i and Π∗
1 = ∏i∼ j(di +d j).
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1 Introduction

Let G = (V,E), V = {1,2, . . . ,n}, E = {e1,e2, . . . ,em}, be a simple connected graph and
d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(i), and d(e1)≥ ·· · ≥ d(em) its sequences of vertex and edge
degrees, respectively. Throughout the paper we use the following notation: ∆e1 = d(e1)+2,
∆e2 = d(e2)+ 2, δe1 = d(em)+ 2, and δe2 = d(em−1)+ 2. With i ∼ j (i, j ∈ V ) we denote
the adjacency of vertices i and j in G.

Two vertex-degree based topological indices, the first and the second Zagreb index, M1
and M2, are defined as [7]

M1 = M1(G) =
n

∑
i=1

d2
i and M2 = M2(G) = ∑

i∼ j
did j.

As shown in [11, 12], the first Zagreb index can be also expressed as

M1 = ∑
i∼ j

(di +d j) =
m

∑
i=1

(d(ei)+2).

A so-called forgotten topological index, F , is defined as [7] (see also [6])

F = F(G) =
n

∑
i=1

d3
i = ∑

i∼ j
(d2

i +d2
j ).
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By analogy to M1, the invariant F can be written in the following way

F =
m

∑
i=1

(d(ei)+2)2 −2M2 .

Multiplicative versions of topological indices were proposed in 2010 [15], whereas the
first and second multiplicative Zagreb indices were first considered in a paper [9] published
in 2011, and were promptly followed by numerous additional studies. One year later, the
multiplicative sum–Zagreb index, Π∗

1, was introduced [4]:

Π∗
1 = Π∗

1(G) = ∏
i∼ j

(di +d j).

It is not difficult to see that this topological index can be also considered as an edge–
degree–based topological index, i.e. that the following equality is valid

Π∗
1 =

m

∏
i=1

(d(ei)+2).

A family of Adriatic indices was introduced in [16, 17]. An especially interesting sub-
class of these descriptors consists of 148 discrete Adriatic indices. A so called inverse sum
indeg index, ISI, was selected in [17] as a significant predictor of total surface area of octane
isomers. The inverse indeg index is defined as

ISI = ISI(G) = ∑
i∼ j

did j

di +d j
.

For more details on this topological index see, for example, in [5, 13].
In this paper we determine lower and upper bounds for ISI in terms of invariants F and

Π∗
1, and some of the graph parameters m, ∆e1 , ∆e2 , δe1 , and δe2 .

2 Preliminaries

In this section we list some analytic inequalities for real number sequences that will be used
in the subsequent considerations.

Let a = (ai), and b = (bi), i = 1,2, . . . ,m, be two positive real number sequences with
the properties

0 < r1 ≤ ai ≤ R1 <+∞ and 0 < r2 ≤ bi ≤ R2 <+∞.

In [1] the following inequality was proven∣∣∣∣∣m m

∑
i=1

aibi −
m

∑
i=1

ai

m

∑
i=1

bi

∣∣∣∣∣≤ m2α(m)(R1 − r1)(R2 − r2), (1)
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where

α(m) =
1
4

(
1− (−1)m+1 +1

2m2

)
.

Let a = (ai), i = 1,2, . . . ,m, be positive real number sequence. In [18] (see also [10]) it
was proven (

m

∑
i=1

√
ai

)2

≤ (m−1)
m

∑
i=1

ai +m

(
m

∏
i=1

ai

) 1
m

. (2)

Let a = (ai), i = 1,2, . . . ,m, be positive real number sequence with the property 0 < r ≤
ai ≤ R <+∞. Szőkefalvi Nagy [14] proved that

m
m

∑
i=1

a2
i −

(
m

∑
i=1

ai

)2

≥ m
2
(R− r)2. (3)

3 Main results

The following theorem establishes an upper bound for the ISI in terms of invariants F and
Π∗

1, and parameters m, ∆e1 , ∆e2 , and δe1 .

Theorem 3.1. Let G be a simple connected graph with m ≥ 2 edges. Then

ISI ≤ 1
2δe1

(
∆2

e1
+(m−1)

(
Π∗

1
∆e1

) 2
m−1

−F +(m−1)2α(m−1)(∆e2 −δe1)
2

)
. (4)

Equality holds if and only if ∆e2 = d(e2)+2 = · · ·= d(em)+2 = δe1 .

Proof. The inequality (1) can be written as∣∣∣∣∣(m−1)
m

∑
i=2

aibi −
m

∑
i=2

ai

m

∑
i=2

bi

∣∣∣∣∣≤ (m−1)2α(m−1)(R1 − r1)(R2 − r2).

For ai = bi = d(ei)+2, i = 2, . . . ,m, R1 = ∆e2 , r1 = δe1 , this inequality becomes

(m−1)
m

∑
i=2

(d(ei)+2)2 −

(
m

∑
i=2

(d(ei)+2)

)2

≤ (m−1)2α(m−1)(∆e2 −δe1)
2. (5)

The inequality (2) can be expressed as(
m

∑
i=2

√
ai

)2

≤ (m−2)
m

∑
i=2

ai +(m−1)

(
m

∏
i=2

ai

) 1
m−1

.
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Setting ai = (d(ei)+2)2, i = 2, . . . ,m, in the above inequality, we get(
m

∑
i=2

(d(ei)+2)

)2

≤ (m−2)
m

∑
i=2

(d(ei)+2)2 +(m−1)

(
m

∏
i=2

(d(ei)+2)2

) 1
m−1

. (6)

From (5) and (6) follows

m

∑
i=2

(d(ei)+2)2 ≤ (m−1)

(
m

∏
i=2

(d(ei)+2)2

) 1
m−1

+(m−1)2α(m−1)(∆e2 −δe1)
2,

i.e.

F +2M2 ≤ ∆2
e1
+(m−1)

(
Π∗

1
∆e1

) 2
m−1

+(m−1)2α(m−1)(∆e2 −δe1)
2. (7)

According to the inequalities

1
∆e1

∑
i∼ j

did j ≤ ∑
i∼ j

did j

di +d j
≤ 1

δe1
∑
i∼ j

did j,

we have
M2

∆e1

≤ ISI ≤ M2

δe1

. (8)

The inequality (4) is obtained from (7) and right inequality in (8).

�

Since α(m)≤ 1
4 , ∆e2 ≤ ∆e1 ≤ 2∆, δe1 ≥ 2δ , we have the following corollary of Theorem

3.1.

Corollary 3.2. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

ISI ≤ 1
4δ

(
4∆2 +(m−1)

(
Π∗

1
2δ

) 2
m−1

−F +(m−1)2(∆−δ )2

)
.

Equality holds if and only if G is a regular graph.

By a similar procedure as in the case of Theorem 3.1, the following statements can be
proved.

Theorem 3.3. Let G be a simple connected graph with m ≥ 2 edges. Then

ISI ≤ 1
2δe1

(
δ 2

e1
+(m−1)

(
Π∗

1
δe1

) 2
m−1

−F +(m−1)2α(m−1)(∆e1 −δe2)
2

)
.

Equality holds if and only if ∆e1 = d(e1)+2 = · · ·= d(em−1)+2 = δe2 .



On relations between inverse sum indeg index and multiplicative sum Zagreb index 197

Theorem 3.4. Let G be a simple connected graph with m ≥ 3 edges. Then

ISI ≤ 1
2δe1

(
∆2

e1
+δ 2

e1
+(m−2)

(
Π∗

1
∆e1δe1

) 2
m−2

−F

+(m−2)2α(m−2)(∆e2 −δe2)
2

)
.

Equality holds if and only if ∆e2 = d(e2)+2 = · · ·= d(em−1)+2 = δe2 .

In the next theorem we determine lower bound for the ISI in terms of F and Π∗
1, and

graph parameters m, ∆e1 , ∆e2 , δe1 , and δe2 .

Theorem 3.5. Let G be a simple connected graph with m, m ≥ 2, edges. Then

ISI ≥ 1
2∆e1

(
∆2

e1
+(m−1)

(
Π∗

1
∆e1

) 2
m−1

−F +
1
2
(∆e2 −δe1)

2

)
. (9)

Equality holds if and only if ∆e2 = d(e2)+2 = · · ·= d(em)+2 = δe1 .

Proof. The inequality (3) will be considered as

(m−1)
m

∑
i=2

a2
i −

(
m

∑
i=2

ai

)2

≥ m−1
2

(R− r)2.

For ai = d(ei)+ 2, i = 2, . . . ,m, R = ∆e2 = d(e2)+ 2 and r = δe1 = d(em)+ 2, the above
inequality becomes

(m−1)
m

∑
i=2

(d(ei)+2)2 −

(
m

∑
i=2

(d(ei)+2)

)2

≥ m−1
2

(∆e2 −δe1)
2. (10)

Using the arithmetic-geometric mean inequality, we get(
m

∑
i=2

(d(ei)+2)

)2

≥ (m−1)2

(
m

∏
i=2

(d(ei)+2)

) 2
m−1

,

i.e. (
m

∑
i=2

(d(ei)+2)

)2

≥ (m−1)2
(

Π∗
1

∆e1

) 2
m−1

. (11)

From (10) and (11) follows

(m−1)
m

∑
i=2

(d(ei)+2)2 ≥ (m−1)2
(

Π∗
1

∆e1

) 2
m−1

+
m−1

2
(∆e2 −δe1)

2,
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i.e.

F +2M2 ≥ ∆2
e1
+(m−1)

(
Π∗

1
∆e1

) 2
m−1

+
1
2
(∆e2 −δe1)

2.

According to this inequality and left inequality in (8) we obtain (9).

�

By a similar procedure as in case of Theorem 3.5, the following theorems can be proved.

Theorem 3.6. Let G be a simple connected graph with m ≥ 2 edges. Then

ISI ≥ 1
2∆e1

(
δ 2

e1
+(m−1)

(
Π∗

1
δe1

) 2
m−1

−F +
1
2
(∆e1 −δe2)

2

)
.

Equality holds if and only if ∆e1 = d(e1)+2 = · · ·= d(em−1)+2 = δe2 .

Theorem 3.7. Let G be a simple connected graph with m ≥ 3 edges. Then

ISI ≥ 1
2∆e1

(
∆2

e1
+δ 2

e1
+(m−2)

(
Π∗

1
∆e1δe1

) 2
m−2

−F +
1
2
(∆e2 −δe2)

2

)
.

Equality holds if and only if ∆e2 = d(e2)+2 = · · ·= d(em−1)+2 = δe2 .
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