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Some remarks on general sum–connectivity coindex

M. Matejić, E. Milovanović, I. Milovanović

Abstract: Let G = (V,E), V = {v1,v2, . . . ,vn} be a simple connected graph with n vertices, m
edges and a sequence of vertex degrees d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(vi). The general sum–
connectivity coindex is defined as Hα(G) = ∑i� j(di + d j)

α , while multiplicative first Zagreb
coindex is defined as Π1(G) = ∏i� j(di + d j). Here α is an arbitrary real number, and i � j
denotes that vertices i and j are not adjacent. Some relations between Hα(G) and Π1(G) are
obtained.
Keywords: Topological indices and coindices, sum–connectivity coindex, multiplicative Za-
greb coindex.

1 Introduction

Let G = (V,E), V = {v1,v2, . . . ,vn}, E = {e1,e2, . . . ,em}, be a simple connected graph with
n = |V | vertices and m = |E| edges. With d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(vi), a sequence
of vertex degrees of G is designated. If vertices vi and v j are adjacent, we write i ∼ j,
otherwise we write i � j. We define values ∆e and δ e as

∆e = max
i� j

{di +d j} and δ e = min
i� j

{di +d j} .

A topological index of a graph is a numerical quantity which is invariant under automor-
phisms of the graph.

Two vertex-degree based topological indices, the first and the second Zagreb index, M1
and M2, are defined as [7, 8]

M1 = M1(G) =
n

∑
i=1

d2
i and M2 = M2(G) = ∑

i∼ j
did j.
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As shown in [12], the first Zagreb index can be also expressed as

M1 = ∑
i∼ j

(di +d j) .

A so-called forgotten topological index, F , is defined as [6]

F = F(G) =
n

∑
i=1

d3
i .

By analogy to M1, the invariant F can be written in the following way

F = ∑
i∼ j

(d2
i +d2

j ) .

The general sum–connectivity index was conceived in [17] as

Hα(G) = ∑
i∼ j

(di +d j)
α ,

where α is an arbitrary real number. Some special cases of this index are the first Zagreb
index M1(G) = H1(G), the harmonic index H(G) = 2H−1(G) [5], the sum–connectivity
index SC(G) = H−1/2(G) [18], and hyper–Zagreb index HM(G) = H2(G) [13]. It is not
difficult to see that

HM(G) = ∑
i∼ j

(di +d j)
2 = F(G)+2M2(G) .

In [4] a concept of coindices was introduced. In this case the sum runs over the edges
of the complement of G. Thus, the first and the second Zagreb coindices are defined as [4]

M1(G) = ∑
i� j

(di +d j) and M2(G) = ∑
i� j

did j ,

and the forgotten Zagreb coindex as [3] (see also [10]) as

F(G) = ∑
i� j

(d2
i +d2

j ) .

The general sum–connectivity coindex was defined in [14] as

Hα(G) = ∑
i� j

(di +d j)
α ,

where α is an arbitrary real number. Again, some special cases of Hα(G) are apart from
M1(G), the sum–connectivity coindex SC(G) = H−1/2(G), the harmonic coindex H(G) =
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2H−1(G), the hyper Zagreb coindex HM(G) = H2(G) [15]. It is not difficult to see that the
following identity holds

HM(G) = F(G)+2M2(G) .

The multiplicative first Zagreb coindex was defined in [16] as

Π1(G) = ∏
i� j

(di +d j) .

In this paper we determine the bound for the difference

Hα(G)− m̄(Π1(G))α/m ,

where m̄ = n(n−1)
2 −m.

2 Preliminaries

In this section we recall some analytical inequalities for the real number sequences that will
be used in the subsequent considerations.

Let a = (ai) and b = (bi), i = 1,2, . . . ,n, be positive real number sequences with the
properties

0 < r1 ≤ ai ≤ R1 <+∞ and 0 < r2 ≤ bi ≤ R2 <+∞ .

In [1] (see also [11]) the following inequality was proven∣∣∣∣∣n n

∑
i=1

aibi −
n

∑
i=1

ai

n

∑
i=1

bi

∣∣∣∣∣≤ n2γ(n)(R1 − r1)(R2 − r2) , (1)

where

γ(n) =
1
n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
=

1
4

(
1− (−1)n+1 +1

2n2

)
.

Equality holds if and only if R1 = a1 = · · ·= an = r1 or R2 = b1 = · · ·= bn = r2.
For the positive real number sequence a = (ai), i = 1,2, . . . ,n, the following inequality

was proven in [9] (
n

∑
i=1

√
ai

)2

≤ (n−1)
n

∑
i=1

ai +n

(
n

∏
i=1

ai

)1/n

, (2)

with equality if and only if a1 = a2 = · · ·= an.
For the positive real number sequence a = (ai), i = 1,2, . . . ,n, with the property a1 ≥

a2 ≥ ·· · ≥ an > 0, in [2] the following inequality was proven

n

∑
i=1

ai −n

(
n

∏
i=1

ai

)1/n

≥ (
√

a1 −
√

an)
2 . (3)

Equality holds if a2 = a3 = · · ·= an−1 =
√

a1an.
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3 Main results

In the next theorem we establish lower and upper bounds for the difference Hα(G)−
m(Π1(G))α/m depending on the parameters α , m, ∆e and δ e.

Theorem 1. Let G be a simple graph with m ≥ 2 edges. If α ≥ 0, then(
∆

α
2
e −δ

α
2
e

)2
≤ Hα(G)−m

(
Π1(G)

)α/m ≤ m2γ(m)
(

∆
α
2
e −δ

α
2
e

)2
. (4)

If α ≤ 0, G � Kn, then(
δ

α
2
e −∆

α
2
e

)2
≤ Hα(G)−m

(
Π1(G)

)α/m ≤ m2γ(m)
(

δ
α
2
e −∆

α
2
e

)2
.

Equality on the left–hand side holds if α = 0, or di +d j =
√

∆eδ e, for any pair of nonadja-
cent vertices of G. Equality on the right–hand side holds if and only if α = 0 or di +d j is a
constant for any pair of non adjacent vertices of G.

Proof. For α ≥ 0, n := m, ai = bi := (di + d j)
α
2 , R1 = R2 = ∆

α
2
e , r1 = r2 = δ

α
2 , with sum-

mation performed over all non adjacent vertices of G, the inequality (1) becomes

m∑
i� j

(di +d j)
α −

(
∑
i� j

(di +d j)
α
2

)2

≤ m2γ(m)
(

∆
α
2
e −δ

α
2
e

)2
,

that is

mHα(G)−

(
∑
i� j

(di +d j)
α
2

)2

≤ m2γ(m)
(

∆
α
2
e −δ

α
2
e

)2
. (5)

For α ≥ 0, n := m, ai := (di+d j)
α , where summation is performed over all pairs of non

adjacent vertices of G, the inequality (2) transforms into(
∑
i� j

(di +d j)
α
2

)2

≤ (m−1)∑
i� j

(di +d j)
α +m

(
∏
i� j

(di +d j)
α

)1/m

,

that is (
∑
i� j

(di +d j)
α
2

)2

≤ (m−1)Hα(G)+m
(
Π1(G)

)α/m
. (6)

Now from (5) and (6) we obtain right-hand side of (4). Equalities in (5) and (6), and
consequently in the right-hand side of (4), hold if and only if α = 0 or di +d j is a constant
for any pair of non adjacent vertices of G.
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For α ≥ 0, n := m, ai := (di + d j)
α , a1 := ∆α

e , an := δ
α
e , with summation performed

over all pairs of non adjacent vertices, the inequality (3) becomes

∑
i� j

(di +d j)
α −m

(
∏
i� j

(di +d j)
α

)1/m

≥
(

∆
α
2
e −δ

α
2
e

)2
, (7)

from which left–hand part of (4) is obtained. Equality in (7), and consequently in (4), holds
if α = 0 or di +d j =

√
∆eδ e for any pair of non adjacent vertices of G.

The case α ≤ 0 is proved analogously, thus omitted.

Since for any m holds γ(m)≤ 1
4 , we have the next corollary of Theorem 1.

Corollary 1. Let G be a simple graph with m ≥ 2 edges. If α ≥ 0, then

Hα(G)−m
(
Π1(G)

)α/m ≤ m2

4

(
∆

α
2
e −δ

α
2
e

)2
.

If α ≤ 0 and G � Kn, then

Hα(G)−m
(
Π1(G)

)α/m ≤ m2

4

(
δ

α
2
e −∆

α
2
e

)2
.

Equalities hold if and only if α = 0, or di + d j is a constant for any pair of non adjacent
vertices of G.

For some specific values of parameter α the following inequalities are obtained.

Corollary 2. Let G, G � Kn, be a simple graph with m ≥ 2 edges. Then we have(√
∆e −

√
δ e√

∆eδ e

)2

≤ 1
2

H(G)−m
(
Π1(G)

)−1/m ≤ m2γ(m)

(√
∆e −

√
δ e√

∆eδ e

)2

≤

≤ m2

4

(√
∆e −

√
δ e√

∆eδ e

)2

,(
4
√

∆e −
4
√

δ e
4
√

∆eδ e

)2

≤ SC(G)−m
(
Π1(G)

)−1/(2m) ≤ m2γ(m)

(
4
√

∆e −
4
√

δ e
4
√

∆eδ e

)2

≤

≤ m2

4

(
4
√

∆e −
4
√

δ e
4
√

∆eδ e

)2

,(√
∆e −

√
δ e

)2

≤ M1(G)−m
(
Π1(G)

)1/m ≤ m2γ(m)

(√
∆e −

√
δ e

)2

≤

≤ m2

4

(√
∆e −

√
δ e

)2

,
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(
∆e −δ e

)2
≤ HM(G)−m

(
Π1(G)

)2/m ≤ m2γ(m)
(

∆e −δ e

)2
≤ m2

4

(
∆e −δ e

)2
.

Equalities in the left-hand sides of the above inequalities hold if di + d j =
√

∆eδ e for any
pair of non–adjacent vertices vi and v j of G. Equalities in the right–hand sides of the above
inequalities hold if and only if di + d j is constant for any pair of non–adjacent vertices vi

and v j of G.

Since 2F(G)≥ HM(G) = F(G)+2M2(G)≥ 4M2(G), the following is valid.

Corollary 3. Let G be a simple graph with m ≥ 2 edges. Then

4M2(G)−m
(
Π1(G)

)2/m ≤ m2γ(m)
(

∆e −δ e

)2
≤ m2

4

(
∆e −δ e

)2
,

2F(G)−m
(
Π1(G)

)2/m ≥
(

∆e −δ e

)2
.

Equalities hold if and only if di = d j for any pair of non adjacent vertices of G.
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