Selective Properties of Fuzzy 2-Metric Spaces

Lj. D. R. Kočinac, V. Çetkin, D. Dolićanin-Djekić

Abstract: We introduce and study some selective covering properties in fuzzy 2-metric spaces. These properties are related to the classical covering properties of Menger, Hurewicz and Rothberger which are well known in selection principles theory.

Keywords: F-2-Menger bounded, F-2-Hurewicz bounded, F-2-Rothberger bounded, game theory

1 Introduction

In this paper we study some topological properties of fuzzy 2-metric spaces related to the classical covering properties of Menger, Hurewicz and Rothberger (for these properties see the survey articles [7, 11]). Recall that a topological space has the *Menger* (resp., *Hurewicz*) *covering property* if for each sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of open covers of X there is a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n and $X = \bigcup_{n\in\mathbb{N}} \bigcup \mathcal{V}_n$ (resp., each $x \in X$ belongs to $\bigcup \mathcal{V}_n$ for all but finitely many n). X has the *Rothberger property* if for each sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of open covers of X there are $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, such that $X = \bigcup_{n\in\mathbb{N}} U_n$.

In the 1960s, Gähler introduced the notion of 2-metric space [5, 6].

Let X be a non-empty set and let $d: X \times X \times X \to \mathbb{R}$ be a mapping satisfying the following conditions:

- 1. For every pair of distinct points $x, y \in X$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$;
 - 2. d(x,y,z) = 0 only if at least two of three points are the same;
- 3. d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x) for all $x,y,z \in X$ (the symmetry);
- 4. $d(x,y,z) \le d(w,y,z) + d(x,w,z) + d(x,y,w)$ for all $x,y,z,w \in X$ (the tetrahedral inequality).

Then d is called a 2-metric on X and (X,d) is called a 2-metric space.

Manuscript received May 31, 2020.; accepted September 15, 2020.

Lj. D. R. Kočinac is with University of Niš, Niš, Serbia; V. Çetkin is with Kocaeli University, Kocaeli, Turkey; D. Dolićanin-Djekić is with State University Novi Pazar, Serbia

In this paper, we assume that all 2-metric spaces have at least three distinct points. Observe also that every 2-metric is non-negative.

A typical example of 2-metric spaces is the Euclidean plane \mathbb{R}^2 with the 2-metric d defined as the area of the triangle spanned by points $x, z, y \in \mathbb{R}^2$. Another such example is \mathbb{R}^3 with $d(x,y,z) = \min\{|x-y|, |y-z|, |z-x|\}$. Nowadays there is the large literature on 2-metric spaces and their modifications, mainly in fixed point theory (see, for example, [1, 2, 3, 4, 9, 9, 10, 12]).

To define fuzzy 2-metric spaces we need the well-known notion of triangular or t-norm.

Definition 1.1 ([14]) A binary operation $*: [0,1] \times [0,1] \to [0,1]$ is a *continuous t-norm* if the following conditions are satisfied:

- (1) * is commutative and associative;
- (2) * is continuous;
- (3) a * 1 = a for all $a \in [0, 1]$;
- (4) $a*b \le c*d$ whenever $a \le c$ and $b \le d$, $(a,b,c,d \in [0,1])$.

Definition 1.2 ([13]) A 3-tuple (X, M, *) is said to be a *fuzzy 2-metric space* if X is an arbitrary nonempty set, * is a continuous t-norm, and M is a fuzzy set on $X^3 \times (0, \infty)$ satisfying $(x, y, z \in X, t, t_1, t_2, t_3 \in (0, \infty))$ the following conditions:

(F2M.1) given distinct elements $x, y \in X$ there is an element $z \in X$ such that M(x, y, y, t) > 0 for each t > 0;

(F2M.2) M(x, y, z, t) = 1 if at least two of x, y, z are equal;

(F2M.3) M(x,y,z,t) = M(x,z,y,t) = M(y,z,x,t) for all $x,y,z \in X$ and all t > 0;

 $(F2M.4) M(x,y,z,t_1+t_2+t_3) \ge M(x,z,w,t_1) * M(x,w,z,t_2) * M(w,y,z,t_3);$

(F2M.5) $M(x,y,z,\cdot):(0,\infty)\to(0,1]$ is a continuous function.

The pair (M,*) (or only M) is called a 2-fuzzy metric on X.

The following is a typical example of a fuzzy 2-metric.

Example 1.3 Let (X,d) be a 2-metric space. Then the mapping $M_d: X^3 \times (0,\infty) \to [0,1]$ defined by

$$M_d(x, y, z, t) = \frac{t}{t + d(x, y, z)}, (x, y, z \in X, t > 0)$$

is a fuzzy 2-metric on X induced by the 2-metric d.

Let (X, M, *) be a fuzzy 2-metric space, $x \in X$, $S \subset X$, $r \in (0, 1)$, t > 0. The set

$$B(x,r,t) = \{ y \in X : M(x,y,z,t) > 1 - r \text{ for each } z \in X \}$$

is called the *open ball* with center x and radius r with respect to t.

The collection of all open balls with center $x, x \in X$, is a base for a topology on (X, M, *), denoted by τ_M .

We also define

$$B(S,\varepsilon,t):=\bigcup_{x\in S}B(x,\varepsilon,t).$$

2 Results

In this section we define and study some covering properties of fuzzy 2-matric spaces.

Definition 2.1 A fuzzy 2-metric space (X, M, *) is said to be:

FM₂: F-2-Menger-bounded (or FM₂-bounded);

 FR_2 : F-2-Rothberger-bounded (or FR_2 -bounded);

FH₂: F-2-Hurewicz-bounded (or FH₂-bounded)

if for each sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ of elements of (0,1) and each t>0 there is a sequence

 $\mathsf{FM}_2: (A_n)_{n\in\mathbb{N}}$ of finite subsets of X such that $X = \bigcup_{n\in\mathbb{N}} \bigcup_{a\in A_n} B(a, \varepsilon_n, t)$;

 $\mathsf{FR}_2: (x_n)_{n\in\mathbb{N}} \text{ of elements of } X \text{ such that } X = \bigcup_{n\in\mathbb{N}} B(x_n, \varepsilon_n, t);$

 FH_2 : $(A_n)_{n\in\mathbb{N}}$ of finite subsets of X such that for each $x\in X$ there is $n_0\in\mathbb{N}$ such that $x\in\bigcup_{a\in A_n}B(a,\mathcal{E}_n,t)$ for all $n\geq n_0$.

Recall that a fuzzy 2-metric space is said to be *fuzzy* 2-*precompact* (respectively, *fuzzy* 2-*pre-Lindelöf*) if for every $\varepsilon \in (0,1)$ and every t > 0 there is a finite (respectively, countable) set $A \subset X$ such that $X = \bigcup_{a \in A} B(a, \varepsilon, t)$.

Evidently,

F-2-precompact \Rightarrow FH_2 -bounded \Rightarrow FM_2 -bounded \Rightarrow F-2-pre-Lindelöf

and

$$FR_2$$
-bounded $\Rightarrow FM_2$ -bounded.

Example 2.2 Let (X,d) be a 2-metric space with the Menger property (with respect to the topology τ_d). Then the induced fuzzy 2-metric space $(X,M_d,*)$ with $*=\cdot$ (the product t-norm) is FM₂-bounded.

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers and t>0. Applied the fact that (X,d) has the Menger covering property to the sequence $(\mathscr{U}_n)_{n\in\mathbb{N}}$, $\mathscr{U}_n=\{B(x,\varepsilon_n):x\in X\}$, to find a sequence $(A_n)_{n\in\mathbb{N}}$ of finite subsets of X such that

$$X=\bigcup_{n\in\mathbb{N}}\bigcup_{a\in A_n}B(a,\varepsilon_n).$$

Let $x \in X$. There is $k \in \mathbb{N}$ and a point $a_k \in A_k$ such that $x \in B(a_k, \varepsilon_k)$, i.e. $\sup_{z \in X} d(a_k, x, z) < \varepsilon_k$. Then for all $z \in X$ we have

$$M_d(x, a_k, z, t) = \frac{t}{t + d(x, a_k, z)} > \frac{t}{t + \varepsilon_k} = 1 - \frac{\varepsilon_k}{t + \varepsilon_k} > 1 - \varepsilon_k.$$

Therefore, $x \in B(a_k, \varepsilon_k, t)$, i.e. $X = \bigcup_{n \in \mathbb{N}} \bigcup_{a \in A_n} B(a, \varepsilon_n, t)$. This means that $(X, M_d, *)$ is FM₂-bounded.

Remark 2.3 Similarly we prove: If a 2-metric space (X,d) has the Hurewicz (Rothberger) property, then the induced fuzzy 2-metric space $(X,M_d,*)$ with $*=\cdot$ is FH₂-bounded (FR₂-bounded).

Theorem 2.4 For a fuzzy 2-metric space (X,M,*) the following are equivalent:

- (a) For each sequence $(\varepsilon_n)_{n\in\mathbb{N}}\subset (0,1)$ and each t>0 there is a sequence $(A_n)_{n\in\mathbb{N}}$ of finite subsets of X such that each finite subset $F\subset X$ is contained in $B(A_n,\varepsilon_n,t)$ for some A_n ;
- (b) For each sequence $(\varepsilon_n)_{n\in\mathbb{N}}\subset (0,1)$ and each t>0 there is a sequence $(A_n)_{n\in\mathbb{N}}$ of finite subsets of X and an increasing sequence $n_1< n_2<\cdots$ of natural numbers such that each finite subset $F\subset X$ is contained in $\bigcup_{n_k\leq i< n_{k+1}} B(A_i,\varepsilon_i,t)$ for some $k\in\mathbb{N}$.

Proof. Evidently (a) implies (b). We prove $(b) \Rightarrow (a)$. Let $(\varepsilon_n)_{n \in \mathbb{N}}$ be a sequence of elements from (0,1) and t > 0. For each $n \in \mathbb{N}$ let $\mu_n = \min\{\varepsilon_i : i \le n\}$ and apply (b) to $(\mu_n)_{n \in \mathbb{N}}$ and t. There is an increasing sequence $n_1 < n_2 < \cdots$ in \mathbb{N} such that each finite set $F \subset X$ is contained in $\bigcup_{n_k < i < n_{k+1}} B(A_i, \delta_i, t)$ for some $k \in \mathbb{N}$. Define now

```
C_n = \bigcup_{i < n_1} A_i, for each n < n_1,

C_n = \bigcup_{n_k < i < n_{k+1}} A_i, for each n such that n_k \le n < n_{k+1}.
```

We claim that the sequence $(C_n)_{n\in\mathbb{N}}$ of finite subsets of X witnesses for $(\varepsilon_n)_{n\in\mathbb{N}}$ and t that (a) is satisfied.

Let F be a finite subset of X. Choose $k \in \mathbb{N}$ such that $F \subset \bigcup_{n_k \leq i < n_{k+1}} B(A_i, \mu_i, t)$. For (each) n with $n_k \leq n < n_{k+1}$ put $C_n = \bigcup_{n_k \leq i < n_{k+1}} S_i$. We have that for each $x \in F$ there is j, $n_k \leq j < n_{k+1}$, and $y \in A_j$ with $x \in B(y, \mu_j, t)$. Further, we have $B(y, \mu_j, t) \subset B(y, \varepsilon_j, t)$ and since $y \in C_n$ we have $x \in B(C_j, \varepsilon_j, t)$, and thus $F \subset B(C_j, \varepsilon_j, t)$. \square

With a small modification in the previous proof one can prove the following.

Theorem 2.5 For a fuzzy 2-metric space (X, M, *) the following are equivalent:

- (a) For each sequence $(\varepsilon_n)_{n\in\mathbb{N}}\subset (0,1)$ and each t>0 there is a sequence $(A_n)_{n\in\mathbb{N}}$ of finite subsets of X such that each finite subset $F\subset X$ is contained in $B(A_n,\varepsilon_n,t)$ for all but finitely many n;
- (b) For each sequence $(\varepsilon_n)_{n\in\mathbb{N}}\subset (0,1)$ and each t>0 there is a sequence $(A_n)_{n\in\mathbb{N}}$ of finite subsets of X and an increasing sequence $n_1< n_2< \cdots$ of natural numbers such that each finite subset $F\subset X$ is contained in $\bigcup_{n_k\leq i< n_{k+1}} B(A_i,\varepsilon_i,t)$ for all but finitely many $k\in\mathbb{N}$.

Definition 2.6 Let (X, M, *) be a fuzzy 2-metric space and $Y \subset X$. Then the mapping $M_Y = M \upharpoonright Y^3 \times (0, \infty) : Y^3 \times (0, \infty) \to [0, 1]$ satisfying (F2M.1) is also a fuzzy 2-metric on Y, and $(Y, M_Y, *)$ is called the *fuzzy* 2-metric subspace of (X, M, *).

Theorem 2.7 Every fuzzy 2-metric subspace of an FM_2 -bounded fuzzy 2-metric space (X, M, *) is also FM_2 -bounded.

Proof. Let $(Y, M_Y, *)$ be a fuzzy 2-metric subspace of (X, M, *) and let $(\varepsilon_n)_{n \in \mathbb{N}}$ be a sequence of elements of (0,1) and t > 0. Since the t-norm * is continuous, for each $n \in \mathbb{N}$ there is $\eta_n \in (0,1)$ such that $(1-\eta_n)*(1-\eta_n)*(1-\eta_n) > 1-\varepsilon_n$. By assumption on (X,M,*) (applied to the sequence $(\eta_n)_{n \in \mathbb{N}}$ and $\frac{t}{3}$) there is a sequence $(A_n)_{n \in \mathbb{N}}$ of finite subsets of X such that

$$X = \bigcup_{n \in \mathbb{N}} \bigcup_{a \in A_n} B(a, \eta_n, t/3).$$

For each $n \in \mathbb{N}$ let

$$C_n = \{c \in A_n : \exists y \in Y \text{ with } y \in B(c, \eta_n, t/3)\}.$$

Further, for each $c \in C_n$ pick an element $y_c \in Y$ such that $y_c \in B(c, \eta_n, t/3)$ and set

$$D_n = \{ y_c : c \in C_n \}.$$

Let us show that the sequence $(D_n)_{n\in\mathbb{N}}$ of finite subsets of Y witnesses for $(\varepsilon_n)_{n\in\mathbb{N}}$ and t>0 that $(Y, M_Y, *)$ is FM₂-bounded.

Let y be an arbitrary element of Y. There exist $n \in \mathbb{N}$ and $a \in A_n$ such that $y \in B(a, \eta_n, t/3)$, and from the definition of C_n it follows $a \in C_n$. Therefore, there exists $y_a \in D_n$ such that $y_a \in B(a, \eta_n, t/3)$, hence $a \in B(y_a, \eta_n, t/3)$. So, we have

$$M(a, y, z, t/3) > 1 - \eta_n$$
 and $M(a, y_a, z, t/3) > 1 - \eta_n$.

Applying the tetrahedral inequality (F2M.4), we have

$$M(y, y_a, z, t) \ge M(y, y_a, a, t/3) * M(y, a, z, t/3) * M(a, y_a, z, t/3)$$

> $(1 - s_n) * (1 - s_n) * (1 - s_n) > 1 - \varepsilon_n$,

which means $y \in B(y_a, \varepsilon_n, t)$. As $y \in Y$ was arbitrary we conclude

$$Y = \bigcup_{n \in \mathbb{N}} \bigcup_{y_a \in D_n} B(y_a, \varepsilon_n, t),$$

i.e. $(Y, M_Y, *)$ is FM₂-bounded. \square

The proof of the following theorem is similar to the proof of Theorem 2.7 and thus it is omitted.

Theorem 2.8 Every fuzzy 2-metric subspace of an FH_2 -bounded space (X, M, *) is also FH_2 -bounded.

Let $(X, M_X, *)$ and $(Y, M_Y, *)$ be fuzzy 2-metric spaces and let $Z = X \times Y$. Then the mapping $M_Z : Z^3 \times (0, \infty) \to [0, 1]$ defined by

$$M_Z(z_1, z_2, z_3, t) = M_X(x_1, x_2, x_3, t) * M_Y(y_1, y_2, y_3, t)$$

for all $z_i = (x_i, y_i) \in Z$, i = 1, 2, 3, and all t > 0 is a fuzzy 2-metric on Z, and the triple $(Z, M_Z, *)$ is called the *product 2-metric space* of X and Y.

Theorem 2.9 The product $(Z, M_Z, *)$ of two FH_2 -bounded spaces $(X, M_X, *)$ and $(Y, M_Y, *)$ is also FH_2 -bounded.

Proof. Let a sequence $(\varepsilon_n)_{n\in\mathbb{N}}\subset(0,1)$ and t>0 be given. By continuity of *, choose for each $n\in\mathbb{N}$ an element η_n in (0,1) such that $(1-\eta_n)*(1-\eta_n)>1-\varepsilon_n$. By assumption on X and Y there are sequences $(F_n)_{n\in\mathbb{N}}$ and $(H_n)_{n\in\mathbb{N}}$ of finite sets of X and Y, respectively and natural numbers n_1 and n_2 such that each $x\in X$ belongs to $\bigcup_{a\in F_n}B(a,\eta_n,t/2)$ for all $n\geq n_1$, and each $y\in Y$ belongs to $\bigcup_{c\in H_n}B(c,\eta_n,t/2)$ for all $n\geq n_2$. We claim that the sequence $(F_n\times H_n)_{n\in\mathbb{N}}$ of finite subsets of Z witnesses for $(\varepsilon_n)_{n\in\mathbb{N}}$ and t that $(Z,M_Z,*)$ is FH₂-bounded.

Let
$$z = (x, y) \in Z$$
 and $n_0 = \max\{n_1, n_2\}$. Then for each $n \ge n_0$
 $x \in B(a_n, \eta_n, t/2)$ for some $a_n \in F_n$

and

$$y \in B(c_n, \eta_n, t/2)$$
 for some $c_n \in H_n$.

Therefore, for all $n \ge n_0$ and $z_n = (a_n, c_n) \in F_n \times H_n$ we have

$$M_Z(z, z_n, w, t) = M_X(x, a_n, w, t) * M_Y(y, c_n, w, t) > (1 - \eta_n) * (1 - \eta_n) > 1 - \varepsilon_n.$$

This means that $z \in B(z_n, \varepsilon_n, t)$ and one concludes that $(Z, M_Z, *)$ is FH₂-bounded. \square

In a similar way, with small necessary changes, one can prove the following.

Theorem 2.10 The product $(Z, M_Z, *)$ of an FM₂-bounded fuzzy 2-metric space $(X, M_X, *)$ and a fuzzy 2-precompact fuzzy 2-metric space $(Y, M_Y, *)$ is FM₂-bounded.

We end the paper by two open questions.

There are infinitely long two-person games associated to FM_2 -boundedness, FH_2 -boundedness, FR_2 -boundedness. We describe the game associated to the FR_2 -boundedness; it is clear how to define games related to the other two properties.

The game G_{FR_2} on a fuzzy 2-metric space (X, M, *) is defined in the following way. Let t > 0 be fixed. Two players, I and II, play a round for each positive integer n. In the n-th round I takes $\varepsilon_n \in (0,1)$, and II responds by choosing an element $a_n \in X$. A play $\varepsilon_1, a_1; \varepsilon_2, a_2, \dots; \varepsilon_n, a_n; \dots$ is won by II if and only if $X = \bigcup_{n \in \mathbb{N}} B(a_n, \varepsilon_n, t)$.

Evidently, if the player II has a winning strategy (or weaker, if I does not have a winning strategy) in the game G_{FR_2} , then (X, M, *) is FR_2 -bounded.

Call a fuzzy 2-metric space X strongly FR_2 -bounded if II has a winning strategy in the game G_{FR_2} . Similarly we define strong FM_2 -boundedness and strong FM_2 -boundedness.

Problem 2.11 Find fuzzy 2-metric spaces which are FR_2 -bounded (respectively, FM_2 -bounded, FH_2 -bounded), but not strongly FR_2 -bounded (respectively, strongly FM_2 -bounded, strongly FH_2 -bounded).

Problem 2.12 Characterize strongly FR_2 -bounded, strongly FM_2 -bounded and strongly FH_2 -bounded fuzzy 2-metric spaces.

References

- [1] H. ÇAKALLI, S. ERSAN, *Strongly lacunary ward continuity in 2-normed spaces*, Sci. World J. Vol. 2014 (2014), Article ID 479679, 5 pages.
- [2] ÇAKALLI, S. ERSAN, New types of continuity in 2-normed spaces, Filomat 30 (3) (2016) 525-532.
- [3] P. DAS, S. PAL, S.K. GHOSAL, Further investigations of ideal summability in 2-normed spaces, Appl. Math. Lett. Vol. 24, 1 (2011), 39–43.
- [4] S. ERSAN, H. ÇAKALLI, Ward continuity in 2-normed spaces, Filomat Vol. 29, 7 (2015), 1507–1513.
- [5] S. G.ÄHLER, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1-4) (1963/64), 115–148.
- [6] S. GÄHLER, Lineare 2-normierte Räume, Math. Nachr. Vol. 28, 1-2 (1964), 1-43.
- [7] LJ. D. R. KOČINAC, *Selected results on selection principles*, In: Proceedings of the Third Seminar on Geometry and Topology (July 15–17, 2004, Tabriz, Iran), pp. 71–104.
- [8] LJ. D. R. KOČINAC, M. H. M. RASHID, On ideal convergence of double sequences in the topology induced by a fuzzy 2-norm, TWMS J. Pure Appl. Math. Vol. 8, 1 (2017), 97–111.
- [9] M. H. M. RASHID, LJ. D. R. KOČINAC, *Ideal convergence in 2-fuzzy 2-normed spaces*, Hacet. J. Math. Stat. Vol. 46, 1 (2017), 145–159.
- [10] W. RAYMOND, Y. FREESE, J. CHO, Geometry of Linear 2-Normed Spaces, N.Y. Nova Science Publishers, Huntington, 2001.
- [11] M. SAKAI, M.SCHEEPERS, *The combinatorics of open covers*, In: Recent Progress in General Topology III (K.P. Hart, J. van Mill, P. Simon (eds.)), Atlantis Press, 2014, pp. 751–800.
- [12] E. SAVAŞ, On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Inequal. Appl. Vol. 2010 (2010), Article ID 482392, 8 pages.
- [13] S. SHARMA, On fuzzy metric spaces, Southeast Asian Bull. Math. Vol. 26, 1 (2002) 133–145.
- [14] B. SCHWEIZER, A. SKLAR, *Statistical metric spaces*, Pacific J. Math. Vol. 10, 1 (1960), 313–334.