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On the Degree Kirchhoff Index of Bipartite Graphs
S. B. Bozkurt Altindag, I. Milovanovi¢, M. Mateji¢, E. Milovanovi¢

Abstract: Let G = (V,E), V = {vi,v2,...,v,}, be a connected graph of order n and size m.
Denote by 1 > % > -+ > %—1 > ¥» = 0 the normalized Laplacian eigenvalues of G. The
degree Kirchhoff index is defined as Kf*(G) = ZmZ?z_ll % In this paper, we obtain some
improved lower bounds on the degree Kirchhoff index of bipartite graphs.
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1 Introduction

Let G=(V,E),V ={vi,va,...,v,}, be an undirected connected graph with n vertices and
m edges and vertex degree sequence A=d; >dy > --->d, =08 >0, d; = d(v;). Denote
by A(G) and D (G) = diag(d;,d>,...,d,) the adjacency and the diagonal degree matrix of
G, respectively. The matrix L(G) = D(G)—A(G) is the Laplacian matrix of G. Since
the graph G is considered as connected, the matrix D(G)_l/ % is well-defined. Then, the
normalized Laplacian is defined as .2 (G) = D(G)fl/ ZL(G)D(G)fl/ 2. Its eigenvalues
Nh=>%>- 2 %-12> % = 0 represent the normalized Laplacian eigenvalues of G. The
following inequalities are valid for ¥, i =1,2,...,n—1 [6]:

n—1 n—1
Y %=n and Zyl-z:n—l—2R_1(G),
i=1 i=1

where |
R(G)=) —,
l; did

is the general Randi¢ index R_; (also called branching index) introduced in [18] (see also

[4D.
In the case of bipartite graphs, which are considered in this paper, we have that y; = 2
[6], and

n—1 n—1
Zyi:n—Z and Zy[z:n+2R_1(G)—4. (.1
i=2 i=2
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The degree Kirchhoff index of G is expressed in terms of normalized Laplacian eigen-
values as
n—1 1
Kf*(G)=2m) —. (1.2)
=11
More on its mathematical properties and its lower and upper bounds can be found in
[3,5,10-17,20]. In this paper, we obtain an improved lower bound on the degree Kirchhoff
index of bipartite graphs.

2 Preliminaries

In this section we recall some analytical inequalities and list some results from spectral
graph theory that will be used later the paper.

Lemma 2.1. [7] Let a = (a;), i = 1,2,...,n, be a real number sequence with the property
ay>ay>--->a,>0. Then

Za, >n (Hal> —Van)? (2.1)

i+1
and
oo (1) ((22) =
Equality in (2.1) holds if ay = a3 = --- = a, = \/a1a,. Equality in (2.2) holds if a = a3 =

aj+ay,

v =dp—-1 =
Lemma 2.2. [1] Let a = (a;) and b = (b;), i = 1,2,...,n, be two positive real numbers
with the properties 0 <ri < a; <Ry <+ and 0 < ry < b; <Ry < oo, Then

n2

T (Ri—r1)(Ry—12). 2.3)

M:

n n
WYYy <
i=1 =1 i=l1

Equality holds ifand only if ry =a1=ay=---=a, =R, orry=by=by=---=b, =Ry.
Lemma 2.3. [6] Let G be a connected graph with n > 2 vertices. Then

(i) n1 <2, with equality holding if and only if G is a bipartite graph.

(ii) ¥n=0and y,—1 #O0.

Lemma 2.4. [11] Let G be a connected graph of order n. Then y» > 1. Equality holds if
and only if G is a complete bipartite graph.
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Lemma 2.5. [6] Let G be a bipartite graph of order n. Then

Yit Yo-iv1 =2, (2.4)
fori=1,2,...,n.

Lemma 2.6. [8] Let G be a connected graph with n vertices, m edges and t(G) spanning
trees. Then

nl 2mt(G)

;= . 2.5
[T [T di )

i=1

In [20], Zhou and Trinajsti¢ obtained a lower bound in terms of the number of vertices
and edges as:

Lemma 2.7. [20] Let G be a connected bipartite graph with n > 2 vertices and m edges.
Then
Kf*(G)>m(2n—3). (2.6)

Equality holds if and only if G is a complete bipartite graph.

The following lower bound, involving the number of vertices, edges and spanning trees,
was presented in [3].

Lemma 2.8. [3] Let G be a connected bipartite graph with n > 3 vertices and m edges.
Then

Kf*(G)2m+2m(n—2)<mz_(1G[§i>H, 2.7)

with equality if and only if G is a complete bipartite graph.

3 Main Results

We now give the main results of this paper.

Theorem 3.1. Let G be a connected bipartite graph with n > 3 vertices, m edges and t(G)
spanning trees. Then, for any a, 1» > o > 1, holds

W);ﬁs+2m(\/ﬁ_m)2 3.1

2m
Kf*(G)>m+—+2m(n-3
716z m+ a3 (21 £y
with equality if &« = 1 and G is a complete bipartite graph.
Proof. The inequality (2.1) can be considered in the following form

1
n—3

n—1 n—1 3
;aiZ(n—fS) (]’k) + (Va3 —Jan_1)* .
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For a; = ﬁ, i=3,4,...,n— 1, the above inequality becomes
n—1 n 1
1 1
= >(n-3)
i3 Vi i=3 ')/z Th—1
that is

L
P _3( m) R
Vtn-1 .

From the above inequality and Lemmas 2.3 and 2.6 we get

2
: 1+(n—3)<yzngz(;)d> +(\Fy3y:_’:”l). (3.2)

Observe that 1
, L[ (2T di\
= — —_— —1].
F ) x? mt(G)

i
Thus, f is a increasing function for x > (Hn( >.) "~ Therefore, for any o, » > o0 > 1, we

have 1
—5 1
XS v (. (m(G)
pxa>1==220> I:ly 4
Hence 1
1 ol di\"*
> - — _gy( 2= %
£ 2 50 = g+ (n-3) (ML)

Combining this with (3.2) we obtain

w‘

- Uy (T (VBE— V1)’
; oc +(n 3)< mt(G)) + Y1 ’

from which the inequality (3.1) is obtained.
The equality in (3.2) holds if

1 1 1 1
r=oand —=---= = = .
Ya Yn—3 Yn—2 VBYn—1

~<\—
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If @ = 1, then by Lemma 2.4, we get that G is a complete bipartite graph. From the above
and Lemma 2.5, we also get

B=Y= = -1 =1

This also confirm that the graph G is complete bipartite. Thus, we conclude that the equality
in (3.1) holds if @ =1 and G is a complete bipartite graph. O

Remark 3.1. For a connected bipartite graph G with n > 3 vertices, it was proved that 2]

n
1
1(G) < =12
(6)< !
ie.,
mt(G) —
2
with equality if and only if G = K, ,. Furthermore, WSYT Y;H) > 0 with equality if and

only if G is a complete bipartite graph. Then, considering these facts with Theorem 3.1, we
have

v

1 2
n . n— 2 _ e
m+2—m+2m(n_3) <O‘Hz—1dl> 3+ m (/B —/Ym1)
* mt(G) V3 V-1
1 )
n . n—3 2 o e
mt(G) Y3Yn—1
2
2 — Y
> 3m+2m(n—3)+ m(\/?y V1)
3/m—1

Kf*(G)

> m(2n—3)

This implies that the lower bound (3.1) is stronger than the lower bound (2.6).

Remark 3.2. Note that the lower bounds (2.7) and (3.1) are incomparable.

2
Since quyin le:H) > 0, we have the following corollary of Theorem 3.1.

Corollary 3.1. Let G be a connected bipartite graph with n > 3 vertices, m edgse and t(G)
spanning trees. Then, for any a, 1» > o0 > 1, holds

O‘H?—1di>”l3

Kf*(G) 2m+2?m+2m(n—3) ( 1 (G)

with equality holding if o« = 1 and G is a complete bipartite graph.
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Theorem 3.2. Let G be a connected bipartite graph with n > 3 vertices, m edges and t(G)
spanning trees. Then

Kf*(G) > m+2m(n—2) <mt (z)?nzz 2]’7';‘_‘]‘2"@) > " (3.3)

Equality holds if G is a complete bipartite graph.

Proof. The inequality (2.2) can be considered as

1

Beeoon(flo) " GO/ETE)

For a; = ﬁ, a, = %, ap_1 = 1= 2,3,...,n—1, the above inequality transforms into

fy=ea(ily) )"

n—1 n—1 n—2 )
Y Llsmoo (212 (1< L, )) " (3.4)
i=2 Yi i=1 Yi 4 Yn—1 2

On the other hand, for a; = b;, i = 2,...,n— 1, the inequality (2.3), can be considered as

that is

n—1 2 (l’l—2)2
n 2 Za —(Z ) < 4 (R]-I”])Z.

j=2

Fora;=7,R1 =%, r = Y%-1,i=2,3,...,n— 1, the above inequality becomes

i=2

n—1 n—1 2 (l’l—2)2
—2)2%—(&) R

From the above and (1.1) we obtain

n_2)2
2n-2)R(6)-1) < " -2,

from which we get
2(R-1(G) = 1)

p— (3.5)

Y2 — Ya—1 > 2

On the other hand, from (2.4) we have

rt+th-1=2.
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Now, from the above and (3.5) we obtain

2(R_ —1 [2(R_ —1
r=>1+ % and %1 <1-— &
n—2 n—2

Thus, we have that

1 V2 Y1 n—2
4<Yn—1+ " —|—2> Zn—ZR_l(G)' (3.6)

Finally, from (3.4), (3.6) and Lemma 2.6, we arrive at (3.3).
Equality in (3.4) holds if » = 13 = -+ = ¥,—1. Since 2+ (n —2)y» = n, it follows that
=7 == Y%-1 = 1, which implies that equality in (3.3) holds if G is a complete
bipartite graph. O

Corollary 3.2. Let T be a tree with n > 3 vertices. Then

Kf (T)> (n—1) (1 +2(n—2) <(n_(’i)_(5)_r§%1f("c;))> "2) .

Equality holds if T = Kj 1.

In [19] it was proven that
n
R_1(G) > —
1(G) 2 51,
with equality if and only if G is a regular graph. Thus, we have the following corollary of
Theorem 3.2

Corollary 3.3. Let G be a connected bipartite graph with n > 3 vertices. Then

1
An—2)[T,di\ "2
Kf* > 142(n-2)| ————E5— . 3.7
f(G)_m< +2(n-2) (Tt 6
Equality holds if G = Kn o, where n is even.

Remark 3.3. Since for bipartite graphs hold

n—>2
—_— 2> 1,
n—2R_1(G) -

the inequality (3.3) is stronger than (2.7).
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