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C-class and pair upper class functions and other kind of
contractions in fixed point theory

A. H. Ansari, A. Tomar

Abstract: In 2014 was introduced C-class and pair upper Class functions that cover more pa-
pers before and after that .base on them some other ideas like :1-1-upclass functions,multiplicative
C-class functions,inverse-C-class functions,CF -simulation functions were planed.In this glance
we look for some condition that can use them or can not.

1 Introduction and mathematical preliminaries

The contraction mapping principle,presenteded in Banach’s Ph.D. dissertation and pub-
lished in 1922 [4], is the source of metric fixed point theory. This basic principle was
largely used in dealing with various theoretical and practical problems, arising in a num-
ber of branches of mathematics. This potentiality attracted many researchers and hence the
literature is reach in fixed point results.

Definition 1.1. Let (X,d) be a metric space. Then amap T : X — X is called a contraction
mapping on X if there exists k € [0,1) such that

d(T(x),T(y)) <kd(x,y) (1.1

forallx,yinX .

Theorem 1.1. (Banach Fixed Point Theorem). Let (X,d) be a non-empty complete metric
space with a contraction mapping T : X — X. Then T admits a unique fixed-point x* in X
(i.e. T(x*)=x"). Furthermore, x* can be found as follows: If we start with an arbitrary
element x in X and define a sequence {x,} by x, = T (x,—1), then x,, — x*.
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Example 1.1. Let X =R, T : X — X,
Tx)=(x—2)(x=3)(x—4)—=3x—1)(x—3)—4(x—2)(x—4)+5(x—2)(x—3) -1
then

TQ)=2 & T(3)=3

note that
36=|T(2)—T(0)|>|2—-0] =2

Example 1.2. Let X =R, T : X — X,

then

note that

1
|T(x)—T)| <k|x—y| ,forall 3 <k<1

The concept Geraghty contraction type maps was introduced by Geraghty [19] in 1973
for generalization of the Banach contraction principle by an contorol function.
Let & denote the class of all real functions 3 : [0,+e) — [0, 1) satisfying the condition

B(t,) — 1 implies 7, — 0, asn — oo.
In order to generalize the Banach contraction principle, Geraghty proved the following.

Theorem 1.2. [19] Let (X,d) be a complete metric space, and let f : X — X be a self-map.
Suppose that there exists B € & such that

d(fx,fy) < B(d(x,y))d(x,y)

holds for all x,y € X. Then f has a unique fixed point z € X and for each x € X the Picard
sequence f"x converges to z.

Definition 1.2. [2] A map A will be called weakly contractive on a closed convex set Q
in the Banach space B if there exists a continuous and nondecreasing function defined on
R such that v is positive on R"\{0}, w(0) =0, lim;_ 1 Y(1) = +o0 and Vx,y € Q,

1A(x) =AW < [lx =yl = wlllx =) (1.2)

forallx,yin X .

If w(t) = (1 — k)t where 0 < k < 1, then (1.2) reduces to (1.1) .
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Theorem 1.3. [2] If A is a weakly contractive map on Q C H then it has a unique fixed
point x* € Q.

Khan et al. [16] introduce a new control function (altering distance function) which are
very useful in fixed point theory.

Definition 1.3. [16] A function y : [0,+c0) — [0, +o0) is called a altering distance function
if the following properties are satisfied:

(i) y(0)=0,

(ii) Y is continuous and monotonically non-decreasing.

We denote by W the set of all altering distance functions.

Theorem 1.4. [16] Let (X,d) be a complete metric space, let ¥ be an altering distance
function,and let f : X — X be a self-mapping which satisfies the following inequality:

v(d(T(x),T(y))) < cy(d(x,y)) (1.3)
Jforall x,y € X and for some 0 < ¢ < 1. Then f has a unique fixed point.

Rhoades [22] considered this class of mappings in metric spaces .We can see the work
of Rhoades in the following.

Definition 1.4. [22] A mapping T : X — X, where X, d is a metric space, is said to be
weakly contractive if,

d(T(x),T(y)) <d(x,y) —o(d(x,y)) (1.4)

forall x,yin X and @ : [0,+e) — [0,+00) is a continuous and nondecreasing function such
that (0) = 0 if and only ift = 0.

Theorem 1.5. [22] Let (X,d) be a complete metric space, T a weakly contractive map .
then T has a unique fixed point x in X .

Theorem 1.6. [8] Let (X,d) be a complete metric space and let T : X — X be a self-
mapping satisfying the inequality

v(d(T(x),T(y) < y(d(x,y)) — @(d(x,y)) (1.5)

where Y, @ : [0,+00) — [0, +o0) are both continuous and monotone nondecreasing functions
with y (0) = @(0) =0, if and only if t = 0. Then T has a unique fixed point.
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2 C-class functions

In 2014 the observation d(7'(x), T (y)) < cd(x,y) <d(x,y),d(fx, fy) < B(d(x,y))d(x,y) <
d(x,y), y(d(T(x),T(y))) < y(d(x,y)) — ¢(d(x,y)) < y(d(x,y)), guided to C-class func-
tion in [9] as following,

Definition 2.1. [9] A mapping f : [0,00)?> — R is called C-class function if it is continuous
and satisfies following axioms:

(1) f(s,2) <s;
(2) f(s,t) = s implies that either s = 0 ort = 0 for all s,t € [0,00).

Note that for some f we have f(0,0) = 0.
We denote C-class functions as €.

Example 2.1. [9] The following functions f : [0,00)? — R are elements of €
(1) f(s,t) =s—1t, f(s,t) =s=1=0;

(2) f(s,t) =ms, 0<m<1, f(s,t) =s=5=0;

(3)f(s,t): 1+z)" r€ (0,00), f(s,t)=s=5s=00rt=0;

(4) f(s,t) =log(t+a’)/(1+1),a> 1, f(s,t) =s=s5s=0o0rt=0;

(5) f(s,t) =In(1+a*)/2, a>e, f(s,t) =5s=s5s=0;

(6) f(s,£) = (s = D)W/ OH) [ [ > 1,r € (0,00), f(s5,0) =5 =1=0;

(7) f(s,t) =slog, ,a,a>1, f(s,t) =s=>s=0o0rt =0;

(8) f(s;t) =5 = (32)(157) f(s:t) =s =1 =0;

(9) f(s,t) =5B(s), B :]0,00) = [0,1) and is continuous, f(s,t) =s=s=0;
(10) f(s,t) =s— g, f(s,0) =s =1 =0;

(11) f(s,t) =s—@(s),f(s,t) =s =5 =0, here ¢ : [0,00) — [0,00) is a continuous
function such that ¢(t) =0 <t =0;

(12) f(s,t) =sh(s,t), f(s,t) =s=s5=0,here h:[0,00) X [0,00) — [0, 0) is a continuous
Sfunction such that h(t,s) < 1 forall t,s > 0;

(13) f(s,t) = /In(1+4s"), f(s,t) =s=s=0.

Definition 2.2. [9] A function @ : [0,4c) — [0,+e0) is called an Ultra-altering distance
function if @ is continuous, and @(0) >0, ¢(t) >0,1>0.

Definition 2.3. [9] A mapping h : [0,+oc0) — [0, +o0) is an A-class function if h(r) >t,¥t >
0.
We denote by < the set of all <f -class functions.

Example 2.2. The following functions h : [0, 4oc0) — [0, 4o0) are elements of <7 :
(1) h(t)=d" —1,a> 1,1t € [0,+o0);
(2) h(t)=mt,m>1,t € [0,+c0).
Definition 2.4. [9] Let T : X — X, then F C X a subset of X invariant under T iff

xeF=T(x)eF
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Theorem 2.1. [9] Let T be a self-mapping defined on a complete metric space (X,d)
satisfying the condition

h(y(d(T (x),T(y))) < f(y(d(x,)), @(d(x,y))) 2.1)

for x,ye F CX , F subclosed of X and invariant under T , ¥ and @ are the earlier
described altering distance function( or an Ultra-altering distance function ), f a function
of C- class , h a function of A- class , Then T has a unique fixed point in F .

If let take h(t) =1, f(s,t) = s—1t,F =X , then (2.1) reduces to (1.5) .

3 Some remarks for best case of contractions
Remark 3.1. Let h,g : [0,4o) — [0,+00) with t < g(t) < h(t) and if we have that

h(w(d(T (x), T(y))) < f(w(d(x,y)), 0(d(x,y))) (3.1

and

g(y(d(T(x),T(y)) < f(y(d(x,y), @(d(x,y))) (3.2)
so (3.2) is more general than (3.1) ,therefore ,

v(d(T (x),T(y) < f(w(d(x,y)), @(d(x,y))) (3.3)

is the best case
Remark 3.2. Let h,g : [0,400) — [0,40) with g(t) < h(t) and if we have that

y(d(T(x), T(y))) < g(y(d(x,y))) (3.4)
and

y(d(T(x),T(y))) <h(y(d(x,y))) 3.5
s0 (3.5) is more general than (3.4) .Therefore if of the following

y(d(T (%), T(y))) < g(y(d(x,y)))

we obtain fixed point then the following contraction

v(d(T(x),T(y) < f(e(y(d(x.))), @(d(x,y)))

where f € €, is not new . because

v(d(T(x),T(y)) < flg(w(d(x,y))), ¢(d(x,y))) < g(w(d(x,y)))-
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4 1-1-upclass functions

Definition 4.1. [7] The pair of functions (W, ) is a pair of generalized altering distance
where Wy, ¢ : [0, 4c0) — [0, +o0) if the following hypotheses hold:

(al) W is continuous and non-decreasing;

(a2) limyse @ (ty) = 0 = limy_yooty = 0.

Definition 4.2. [7] Let X be a set, and let # be a binary relation on X. A mapping
T :X — X is an Z-preserving mapping if x,y € X : xZy = TxZTy.

In the sequel, let N denote the set of all non-negative integers, let R denote the set of all
real numbers.

Definition 4.3. [7] Let N € N. Z is N-transitive on X if x0,X1,...,xn+1 € X : Xi%xXi11 for
alli={0,1,....,N} = xoZxN+1.

The following remark is a consequence of the previous definition.

Definition 4.4. [7] Let (X,d) be a metric space and %\, %> two binary relations on X. A
metric space (X ,d) is (%#1,%,)-regular if for every sequence {x,} in X such that x, —x € X
as n — oo, and Xy, H1Xn11,XnZrxn+1 for all n € N, there exists a subsequence {xn(k)} such
that X, K1 X, X (1) %2x. for all k € N.

Definition 4.5. [7] A subset D of X is (#1,%,)-directed if for all x,y € D, there exists
7 € X such that (x%12) N\ (yZ%1z) and (x%z) N (y%»2).

Definition 4.6. [7] Let X be a set and a, B : X x X — [0, +o0) are two mappings. We define
two binary relations %, and 9%, on X by

xZy <= a(x,y) <1 and x%y<= B(x,y)>1, 4.1)

forall x,y € X.

Definition 4.7. [7] Let (X,d) be a metric space. A mapping T : X — X is (ay,B¢)-
contractive mappings if there exists a pair of generalized distance (Y, ) such that

v(d(Tx,Ty)) < a(x,y)y(d(x,y)) = B(x,y)¢(d(x,y)) forall x,y € X, (4.2)

where o, : X X X — [0, +o0).

Theorem 4.1. [7] Let (X,d) be a complete metric space, N € N\{0}, and T : X — X be
an (ay, B@)-contractive mapping satisfying the following conditions:

(Al) %;is N-transitive fori=1,2;
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(A2) T is %Z;-preserving fori=1,2;
(A3) there exists xo € X such that xo%;Tx fori=1,2;

(A4) T is continuous.

Then, T has a fixed point, that is, there exists x* € X such that Tx* = x*.

Definition 4.8. [12] A mapping f : [0,00)* — R is a 1-1-upclass function if the following
conditions hold for all u,v,s,t € [0,00)

1. f(1,1,s,t) is continuous;

2.0<u<lyv>1= fuvs,t) < f(1,1,s1) <s;
3. f(L,,s,0)=s=s=0o0rt=0.

We denote 6) the set of all 1-1-upclass functions.
Note that for some f we have f(1,1,0,0) =0.

Example 4.1. [12] The following functions f : [0,00)* — R are elements of €, for all
u,v,s,t € [0,00):

L. f(u,v,s,t) =us—vt, f(1,1,5,6) =s=>1=0;

us — vt
2. flu,v,s,t) = L f(L1Lst)=s=>1t=0;
3. f( =2 f(l1l,st)=s=>s=00rt=0
. flu,v,s , 18, s=s or ;
T 1+ vt
ut +a*

4. fu(u,v,s,t) =1log, T a>1, fo(I,1,s,6) =s=s=00rt =0;

us
5. f(u,v,s,t) =1In u1+e

,f(L,Ls, 1) =s=5=0;
+v fLs,)=s=35

6. fa(u,v,s,t) = (us—}—a)ﬁ —a,a>1, fo(1,1,5,t) =s=1=0;
7. fa(u,v,s,t) =uslog, ,a,a>1, f;(1,1,5,t) =s=s5=00rt =0

Definition 4.9. [12] Let (X,d) be a metric space. A mapping T : X — X is (CAB)-
contractive mapping if there exists a pair of generalized altering function (y,9), h € <
and f € 6 such that

h(y(d(Tx,Ty))) < fa(x,y), B(x,y), ¥(d(x,y)),¢(d(x,y))) forallx,y € X, (4.3)

where o, : X x X — [0, +c0).
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Theorem 4.2. [12] Let (X,d) be a complete metric space, N € N\{0}, and T : X — X be
an (CAB)-contractive mapping satisfying the following conditions:

(Al) Z%;is N-transitive fori=1,2;
(A2) T is %;-preserving fori=1,2;
(A3) there exists xo € X such that xo%;Tx fori =1,2;

(A4) T is continuous.

Then, T has a fixed point, that is, there exists x* € X such that Tx* = x*.

5 Cone C-class functions

Let E be a real Banach space with the zero vector 6 and P a nonempty subset of E. P is
called a cone if and only if:
(i) P is closed, non-empty and P # {0},
(ii) ax+ by € P for all x,y € P and non-negative real numbers a, b,
(iii) PN (—P) = {6}.

Given a cone P C E, we define a partial ordering < with respect to P by x <X y if and
only if y—x € P. We shall write x < y if x <y and x # y; we shall write x < y if y—x € int P,
where int P denotes the interior of P.

Definition 5.1. [13] Ler v, ¢ : IntPU{0} — IntPU{0} be two continuous and monotone
increasing functions satisfying

(a) y(t) =¢(t) =0 ifand only ift = 6,

(b)t—wy(r) e PU{B},9(t) <1, fort € intP.

Definition 5.2. [13] A mapping F : P> — P is called cone C-class function if it is continuous
and satisfies following axioms:

(1) F(s,t) <s;

(2) F(s,t) = s implies that either s = 0 ort = 0; for all s,t € P.

We denote C-class functions as €.

Example 5.1. [13] The following functions F : P> — P are elements of €., for all s,t € P:

(1) F(s,t)=s—t, F(s,t)=s=1t=0;

(2) F(s,t) = ks, 0<k<l1, F(s,t) =s=s5=0;

(3) F(s,t) =sB(s), B: P—10,1), F(s,t) =s=s5=06;

(4) F(s,t) =s—@(s),F(s,t) =s = s = 0,here ¢ : P — P is a continuous function such

t
(5) F(s,t) =s—h(s,t), F(s,t) =s=1=0, here h: Px P — P is a continuous function
such that h(s,t) =0 <t =0 forallt,s > 6.
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Theorem 5.1. [13] Let (X,d) be a complete cone metric space with regular and solid cone
P such that d(x,y) € intP, for x,y € X with x #y. Let T : X — X be a mapping satisfying
the inequality

y(d(Tx,Ty)) 2 F(y(d(x,y)), ¢(d(x,y))) forall x,y€X (5.1)

where F is element of 6., , W, are as in Definition 5.1 and they satisfy

(i) W is a continuous and strongly monotone increasing (Y (x) 2y (y) & x=y)

(ii) either ¢ (1) < d(x,y) or d(x,y) < ¢(¢t), fort € intPU{0} and x,y € X. Then T has a
unique fixed point in X.

Remark 5.1. because operator exp,rational etc in cone do not mean, we can not freely use
C-class functions in cone.

6 Multiplicative C-class functions

Definition 6.1. [3] A mapping F : [1,0)> — R is called multiplicative C-class function if
it is continuous and satisfies following axioms:

(a) F(x,y) <x;

(b) F(x,y) = x implies that either x =1 or y = 1; for all x,y € [1,0).

We denote multiplicative C-class functions as %;,. Several examples of %), functions

can be find in [3].
Base on recent work [1] we state the following proposition.

Proposition 6.1. There is a bijective mapping between 6, and €

Proof. for each f € € consider F(x,y) = e/(n%InY) where x,y > 1

for all F € 6, consider f(s,t) =In[F (e, ¢')],where s,r > 0

these show a bijective map between C-class function and multiplicative C-class func-
tion. O

Now in the following see some relations,

Example 6.1. Following examples show related class € and 6.

1. f(s,t)=s—t. <= F(x,y) =3

2. f(s,t) =msforsome me (0,1). <= F(x,y)=x";me (0,1),
1

3. f(s,1) = iy for some r € (0,00). = F(x,y) =x*""™" for some r € (0,00)

4. f(s,;t) =In(HL), fore >a> 1. < F(x,y) = 1Jr;’]nx,fore>a> 1

5. f(s,t) =s— . <= F(x,y) = %
y Ty

1
e (1+Inx)"

6. fs,1) = riyi 7 € (0,00). = F(x,y) =x

7. f(s,t) =In(1+5). <= F(x,y)=1+Inx
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7 Inverse-C-class functions

Definition 7.1. [24] A mapping F : [0,00)> — R is called inverse-C-class function if it is
continuous and satisfies following axioms:

(1) F(s,2) >s;
(2) F(s,t) = s implies that either s =0 ort = 0; for all s,t € [0,00).

Note that for some F we have that F(0,0) = 0.
We denote collection of all inverse C—class functions as €.

Example 7.1. [24] The following functions F : [0,0)> — R are elements of €, for all
s,t € [0,00):

1. F(s,t)=s+t, F(s,t)=s=1=0;

2. F(s,t) =ms, 1<m<oo, F(s,t) =5s=s5=0;

3. F(s,t) =s(1+1)"; re (0,0), F(s,t) =s=s=0o0rt=0;

4. F(s,t) =log,(t+a*)(1+1),a>1, F(s,t)=s=1=0;

5. F(s,t)=¢(s),F(s,t) =s=5=0,here ¢ : [0,00) — [0,00) is a upper semicontinuous

function such that ¢(0) =0, and ¢(t) >t fort >0,

6. f(s,t)=0(s); ¥ : Rt xR" — Ris a generalized Mizoguchi-Takahashi type function,
fls,t)=s= s=0;

We will use the following control functions, defined as:
Let @ denote the set of all functions @ : [0,+e) — [0, +c0) that satisfy the following
conditions:

1. @ is lower semi-continuous on [0, +oo),
2. ¢(0)=0,
3. ¢(s) > 0 foreach s > 0.

Let ®; denote the set of all functions @ : [0,+oc0) — [0, 4o0) that satisfy the following
conditions:

1. ¢ is lower semi-continuous on [0, +o0),
2' (p(o) Z O,

3. ¢(s) > 0foreachs >0
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Let W denote all the functions y : [0,00) — [0, ) which satisfy:
1. y(¢t) =0if and only if t = 0,
2. y is continuous and increasing.

Theorem 7.1. [24] Let X be a set with a symmetric d. Suppose that f and g are owc self
maps of X satisfying:

w(d(fx,fy)) 2 F(y(m(x,y)), @(m(x,y))), (7.1)

where m(x,y) = min{d(gx,gy),d(fx,gx),d(fy,gy)}. Then f and g have common fixed
pointin X.

8 Cp—simulation functions

In this section, we generalized the simulation function introduced by Khojasteh et al. [17]
using the function of C-class as follows:

Definition 8.1. [20] A mapping F : [0,%0)> — R has property Cr, if there exists an Cr >0
such that

(1) F(s,t) >Cp = s>1;

(2) F(t,t) <Cp, forallt € [0,).

Example 8.1. [20] The following functions F : [0,00)> — R are elements of € that have
property Cg, for all s,t € [0,00):

(1)F(s,t) = s—t,Cp=r,re€0,0)
s
2)F(s,t) = ——— 0,00);Cr =1
() (S,) <1+Z)r7r€(7 ) F
s r
3)F - 2 > 1cr=-— rep,e
(Es1) = ke blr=p ree)
(4)F(s,t) = (s+0)T7 —11>1,Cr=0,1
241t
S)F(s,t) = s—(—);Cr =0,
(5) F(s,1) S(l—i-t) F
6)F(s.1) = S .0<k<1,Cr=k1
3 - 1+t’ yOF — Ky
ks k+1
7)F(s.f) = —— 0<kCpr=-1"1
()(Su) 1+kta<7F ka
s
8 F(s,t) = —0<k,Cr=1,2
(8) F(s,t) 111 <K, CF

Definition 8.2. A simulation function is a mapping § : [0,0) X [0,0) — R satisfying the
following axioms:
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(Cl) C(0,0) =0;

(&) L(t,s) < F(s,t) forallt,s > 0, here function F : [0,00)*> — R is element of €

(C3) if {ta}, {sn} are sequences in (0,c0) such that lim,_,et, = lim, s, > 0, then
limsup{ (t,,s,) <O.

n—oo

The third condition is symmetric in both arguments of { but, in proofs, this property
is not necessary. In fact, in practice, the arguments of { have different meanings and they
play different roles. Then, we slightly modify the previous definition in order to highlight
this difference and to enlarge the family of all simulation functions.

Definition 8.3. [20] A Cp—simulation function is a mapping § : [0,00) x [0,00) — R satis-
fving the following conditions:

(Ca) €(0,0) =0;

(&) §(t,5) < F(s,t) forallt,s > 0; here function F : [0,0)?> — R is element of € which
has property Cp

() if {tn},{sn} are sequences in (0,o0) such that lim,_.t, = lim,_,es, > 0, and t,, <
sp, then limsup( (1,,s,) < Cr.

n—soo

Let Zr be the family of all Cp—simulation functions § : [0,e0) X [0,00) — R. Every
simulation function as in Definition 8.2 is also a Cr—simulation function as in Definition
8.3, but the converse is not true, for this see Example 3.3 in [18] using C-class function
F(s,t)=s—t.

Example 8.2. [18] Let k € R be such that k < 1 and let { : [0,00) x [0,00) — R be the
function defined by

S5(s—t) if s<t

ks —t otherwise

9 —
Clearly, § verifies (£ 1), and ({2) follows from

O<s<t= ((t,s)=5(s—1)<s—t
t,s >0,
O<t<s= ((t,s)=ks—t<s—t

If {t,},{sn} are sequences in (0,c0) such that lim,_,et, = lim, s0s, = 6 >0, and t, <
Sy, then
limsup{ (#,,s,) = limsup(ks, —,) = (k—1)0 <0,
n—soo n—soo
Therefore, € is a simulation function in the sense of Definition 8.3. However, if we take
t,=5ands,=5— %,for all n > 1 ,then we have that

1 _

limsupl (2,,s,) = limsup5[(5——-) = 5] = limsup—5 =0,

n—oo n—soo n n
n—oo

that is, § does not verify axiom ({3) in Definition 8.2.
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Definition 8.4. Let (X,d) be a metric space and T, g : X — X be self-mappings. A mapping
T is called a (Zp,g)-contraction if there exists § € Zg such that

¢(d(Tx,Ty),d(gx,8y)) = Cr (8.1)
for all x,y € X such that gx # gy.
Now if let F(s,t) = s —t, we have the following Definition of [18]

Definition 8.5. Let (X,d) be a metric space and T, g : X — X be self-mappings. A mapping
T is called a (Z,g)-contraction if there exists § € Z such that

€(d(Tx,Ty),d(gx,8y)) = 0
for all x,y € X such that gx #* gy.

Theorem 8.1. Let T be a (Zp 4 8)-contraction in a metric space (X,d) and suppose that
there exists a Picard sequence {x,}n>0 of (T,g). Also assume that, at least, one of the
following conditions hold.

(a) (g(X),d) (or (T(X),d)) is complete.

(b) (X,d) is complete and T and g are continuous and compatible.

(c) (X,d) is complete and T and g are continuous and commuting.

Then T and g have, at least, a coincidence point. Furthermore, either the sequence
{gxn} contains a coincidence point of T and g or; at least, one of the following properties
holds.

In case (a), the sequence {gx,} converges to u € g(X) and any point v € Xsuch that
gv =u is a coincidence point of T and g.

In cases (b) and (c), the sequence {gx,} converges to a coincidence point of T and g.

In addition to this, if x,y € X are coincidence points of T and g, then Tx =gx=gy="T).
And if g (or T ) is injective on the set of all coincidence points of T and g (or, simply, it is
injective), then T and g have a unique coincidence point.

Now if let F(s,t) = s —t, we have the following result of [18]

Corollary 8.1. Let T be a (Z,g)-contraction in a metric space (X,d) and suppose that
there exists a Picard sequence {x,}n,>0 of (T,g). Also assume that, at least, one of the
following conditions holds.

(a) (g(X),d) (or (T(X),d)) is complete.

(b) (X,d) is complete and T and g are continuous and compatible.

(c) (X,d) is complete and T and g are continuous and commuting.

Then T and g have, at least, a coincidence point. Furthermore, either the sequence
{gx,} contains a coincidence point of T and g or; at least, one of the following properties
holds.

In case (a), the sequence {gx,} converges to u € g(X) and any point v € X such that
gv =u is a coincidence point of T and g.
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In cases (b) and (c), the sequence {gx,} converges to a coincidence point of T and g.

In addition to this, if x,y € X are coincidence points of T and g, then Tx = gx =gy =Ty.
And if g (or T ) is injective on the set of all coincidence points of T and g (or, simply, it is
injective), then T and g have a unique coincidence point.

9 Pair upper Class functions

Definition 9.1. [26] Let T :X — X and o0 : X x X — R*. We say that T is an a-admissible
mapping if a(x, y) > 1 implies a(Tx, Ty) > 1, x, y € X.

Theorem 9.1. [15] Let (X,d) be a complete metric space and T : X — X be an Q-
admissible mapping. Assume that there exists a function B : [0,00) — [0,1) such that, for
any bounded sequence {t,} of positive real , B(t,) — 1 implies t, — O, such that

(d(Tx,Ty)+1) "0 = B (d (x,y))d (x,y) +1 ©.1)

forall x, y € X .Suppose that either

(a) T is continuous, or

(b) if {x,} is a sequence in F such that x, — x, 0.(Xn,Xp1+1) > 1, for all n, then at(x,Tx) > 1.
Then T has a fixed point.

Theorem 9.2. [15] Ler (X,d) be a complete metric space and T : X — X be an a-
admissible mapping. Assume that there exists a function 3 : [0,00) — [0,1) such that, for
any bounded sequence {t,} of positive real , B(t,) — 1 implies t, — 0, such that

(a5, T) 0 3, Ty) 4171 = Bl ©2)

forall x, y € X .Suppose that either

(a) T is continuous, or

(b) if {x,} is a sequence in X such that x, — x, 0.(Xn,Xn+1) > 1, for all n, then o (x,Tx) > 1.
If there exists xo € X such that &t(xg,Txg) > 1, then T has a fixed point.

Theorem 9.3. [15] Ler (X,d) be a complete metric space and T : X — X be an Q-
admissible mapping. Assume that there exists a function 3 : [0,00) — [0,1) such that, for
any bounded sequence {t,} of positive real , B(t,) — 1 implies t, — 0, such that

o (xa Tx) a (y7 Ty) d(Tvay) =p (d(xvy))d(xvy) 9.3)

forall x, y € X .Suppose that either

(a) T is continuous, or

(b) if {x,} is a sequence in X such that x, — x, 0.(Xn,Xn+1) > 1, for all n, then o (x,Tx) > 1.
If there exists xo € X such that a(xo,Txo) > 1, then T has a fixed point.
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In 2014 the observation
(d(Tx,Ty)+1)*T0D) = B(d (x,y))d (x,y) +1,

(0t (x, Tx) 0t (y, Ty) +1)4T%TY) = pBldxy))d(ey)
o (x,Tx) o (y,Ty)d(Tx,Ty) = B(d(x,y))d(x,y),
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guided to upper class function in [10] that then reform definition(part words ) in [11],as

following.

Definition 9.2. [10], [11] We say that the function h: RT™ x RT™ — R is a function of

subclass of type I, if x > 1 => h(1,y) < h(x,y) forally € R™.
Example 9.1. [10], [11] Define h: R* x Rt — R by:
(y+0)*1>1;

(x+1),0>1;

(,y) =
(,y) =
(c) h(x,y)=x"y,neN;
(%)
(x,y) =

= i1 (Eox)yn eN;

() h(x,y) =15 (Tox') +1]",1>1,neN

forall x,y € RY. Then h is a function of subclass of type L.

Definition 9.3. [10], [11] Let h,.% : R x Rt — R, then we say that the pair (Z ,h) is an
upper class of type I, if h is a function of subclass of type I and: (i) 0 < s < 1= F(s,1) <

F(1,1), (i) h(1,y) < F(1,t) =y <tforallt,y € RT.

Example 9.2. [10], [11] Define h, 7 : R* x Rt — R by:

(a) h(x,y y+1)*1>1and F(s,t) =st+1;

~—~

(b) h(x,y) = (x+1)",1 >1and F (s,t) = (1 +1)*;

(d) h(x,y) =y and F(s,t) =1;
n+1 (Zn ox)y,neNand F (s,t) = st;

(e) h(x,y)=[-1 (YroX) +1]",1>1,n € Nand F(s,1) = (1+1)"

(x,y) =
(x,y) =
(c) h(x,y) =x"y, m € Nand .F (s,t) = st;
() =
(x,y) =

(d) h(x,y

for all x,y,s,t € RY. Then the pair (Z ,h) is an upper class of type L.
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Definition 9.4. [10], [11] We say that the function h: Rt x R™ x R™ — R is a function of
subclass of type I1, if x,y > 1 = h(1,1,z) < h(x,y,z) for all z € R™".

Example 9.3. [10], [11] Define h: R* x R* x R* — R by:

(a) h(x,y,z) = (z+)¥,01>1;

(b) h(x,y,z) = (xy+1)%,1>1;

(c) h(x,y.2) =2z

(d) h(x,y,z) =x"y"z’ ,;m,n,p € N;

(e) h(x,y,z)= Mkmnpq,keN

forall x,y,z € RT. Then h is a function of subclass of type II.

Definition 9.5. [10], [11] Let h: Rt x RT x RT = R and .7 : RT™ x R™ — R, then we
say that the pair (F ,h) is an upper class of type I, if h is a subclass of type II and: (i)
0<s<1= F(s,t) <F(1,1), (ii) h(1,1,2) < F (s,t) = z < st for all s,t,z € RT.

Example 9.4. [10], [11] Define h: Rt x RT x R — R and .7 : Rt x RT — R by:

(a) h(x,y,z) = (z+ 1), 01> 1,7 (s,1) =st+1;

(b) h(x,y,z) = (xy+1)%1>1,%(s,t) = (1 +1)*;

(c) h(x,y,z) =z,F(s,t) =

(d) h(x,y,z) =x"y"zP ,m,n,p € N, F (s,t) = s't’

(e) h(x,y,z) = wzk m,n,p,q,k € N,.F (s,t) = sktk

forall x,y,z,s,t € R*. Then the pair (F ,h) is an upper class of type IL.

Definition 9.6. [10] Let (X,d) be a metric space and T : X — X, a nonempty subset F of
X is valled invariant under the T if Tx € F for every x € F.

Definition 9.7. [10] Let T :X — X and o0 : F x F — R" (F C X). We say that T is an
op-admissible mapping if a(x, y) > 1 implies o.(Tx, Ty) > 1, x, y € F.

Note: A mapping T is called an or-admissible mapping (see [26]) if we take F = X in
Definition 9.7.

Definition 9.8. [10] Ler (X,d) be a metric space, F a nonempty subset of X, T : X — X
and a0 : F x F — R*. A mapping T is said to be ag-contractive mapping if there exists
a P :[0,00) — [0, 1] such that for any bounded sequence {t,} of positive reals, B(t,) — 1
implies t, — 0, such that for all x,y € F, following condition holds:

h(o(x, Tx), & (y, Ty), wd(Tx,Ty)) < 7 (B(d(x,y)), wd(x,y)), ©4)
where pair (F ,h) is a upclass of type Il and y € V.
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Theorem 9.4. [10] Let (X,d) be a complete metric space, F a nonempty closed subset of
X, T : X — X is an ap-admissible mapping and F is invariant under T. Further assume that
T is an ag-contractive mapping. Suppose that there exists xo € F such that ot(xo,Txo) > 1
and either of the following conditions hold:

(a) T is continuous, or

(b) if {xn} is a sequence in F such that x, — x, &(xp,Xx,+1) > 1, for all n, then a(x,Tx) > 1.
Then T has a fixed point.
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