Abstract

Fluid prescription is the basis of critical care, emergency and hospital department therapy. Fluid management is directed according to daily fluid needs and output, body weight, sodium, potassium and glucose content. The consideration of potential risks of fluid overload presents advanced strategy in practice. Monitoring and recording of intravenous and other fluid management is of utmost importance but it is usually poor. Scientific research in the last fifteen years announces a new era in fluid therapy. At the beginning, volume of fluid was pointed out both in the area of initial critical care presentation and the period after the resuscitation. Then, the scientific data about fluid composition increased attention to potential adverse effects of fluid and electrolyte accumulation. Finally, it becomes apparent that fluid and electrolyte overload may influence patient outcomes. Everything previously mentioned was mainly studied in critical care patients and produced new apprehension of the fluid as the solitary drug. The aim of this mini review was to point out the importance of defining fluid as the drug and to present main definitions in this area in this moment.

Key words: patient safety; critical incident; medical errors

Introduction

Fluid therapy has become an area of increasing interest and an emerging paradigm within the emergency and critical care medicine. Scientific data collected over the last 15 years implies that fluid therapy is not composed of simply using fluids for stabilizing and dissolving medications, but it also includes considering indication, type of fluid, dose, duration, de-escalation point and side effects. Changing outcome in critical care patients, in case of fluid overload and in case of using different types of fluid in different clinical scenarios, emphasizes that this scientific area has huge importance.

There are 4 types of fluid, according to indication area: resuscitation fluids, maintenance fluids, replacement fluids and medical nutrition therapy.

Resuscitation fluid means that fluid therapy is used to stabilize tissue hypoperfusion. According to new Surviving Sepsis Guidelines for septic patients, it should comprise minimum 30ml/kg (ideal body weight) of intravenous (IV) crystalloids in initial fluid resuscitation. In the study of Regenmortel et al., resuscitation fluid is given by rate above 166ml/h.

Maintenance fluid is the provision of fluids to patients whose needs can not be met by means of oral administration. The average amount should
be about 1-2ml/kg/h, or 25ml/kg. These fluids are
given for the purpose of covering daily needs for
glucose, water, sodium and potassium. Daily needs
for water are about 1ml/kg/h, for glucose 1-1.5g/
kg/day (to limit ketosis), sodium and potassium
about 1mmol/kg/day.

Replacement fluids are fluids and electrolytes
administered when losses can not be corrected
orally or enterally.

Medical nutrition therapy consists of parenter-
al, enteral nutrition and oral supplements contain-
ing water as a part of composition. Various enteral
formulas contain around 80% of water. This vol-
ume is frequently not included in the calculation
of daily fluid balance.

Drug selection

Two important scientific areas of resuscitation
fluid in the last decade have been the choice be-
tween colloids vs crystalloids and the choice among
colloids, balanced or unbalanced fluids. Criti-
cal and emergency care studies analyzed different
outcomes of patients resuscitated with colloid or
colloid fluids5,6. The studies included a signif-
icant number of patients from different parts of
the world and were conducted in single or a mul-
ticenter intensive care units (ICU)7. Some of the
studies showed increased risk of renal replacement
therapy and increased risk of death if colloids were
used as resuscitation fluids6,8,9. On the other hand,
Annane et al10 revealed no difference in mortality,
fewer deaths and more days alive on mechanical
ventilation in colloid group. However, when com-
paring starches with crystalloids, based on data
obtained from different studies6,7,10,11,12, the Eu-
ropean Medicine Agency Pharmacovigilance Risk
Assessment Committee concluded, in 2013, that
“the benefits of solutions containing hydroxyethyl
starches no longer outweigh their risks” and there-
fore recommended “that the marketing authoriza-
tions for these medicines be suspended13”.

Relying on previous data, the guidelines on
patients with sepsis2, trauma14 and burns15 em-
phasized the importance of using crystalloids as
resuscitation fluids. The second area of investiga-
tion related with fluid-medications selection en-
closed studies on different outcomes in critical
patients when using unbalanced versus balanced
colloids. The definition of balanced fluids has its
origin in studies which compare different tonicity
of fluids and more importantly, fluids with differ-
et chloride content. Namely, Wilcox et al16 meas-
ured glomerular filtration rate (GFR) during the
acute increase of sodium, chloride or osmolality
in denervated greyhounds’ kidneys. The infusion
of increased tonicity solutions produced renal va-
sodilatation with the increase in GFR. In contrast,
during the infusion of chloride solutions, vasodil-
atation was reversed after 1-5min and both renal
blood flow and GFR decreased below pre-infusion
level. The authors concluded that hyperchloremia
produces progressive renal vasoconstriction and
decrease in GFR that is independent of the renal
nerves. Study of Chowdry et al17 on healthy volun-
tees showed that infusion of 0.9% saline resulted
in the reduction of renal blood velocity and renal
cortex perfusion. The impact of a fluid composition
of chloride ion on the outcome, once again empha-
sized the importance of fluid composition (Table 1).

The implementation of chloride-restrictive
strategy in ICU hemodynamic resuscitation pro-
tocol during clinical study of Yunos et al18 showed
incidence of reduced acute kidney injury and renal
replacement therapy after implementation. Sem-
ler et al19 performed investigation in five ICU’s
on more than 15,000 patients and compared the
outcomes when 0.9% NaCl or Plasma-Lyte and
Lactated Ringer’s solution where used. They found
small difference in major kidney adverse events
within 30 days. Based on the data presented above,
it can be stated that balanced crystalloids, with low
chloride content, are gradually being used as the
drug of choice for hemodynamic resuscitation in
the majority of critical care settings.

Criteria for medication selection

Crystalloid formulations vary widely between
different countries. There is a lack of chemical
composition information on the products. Misun-
derstanding of osmolality and osmolarity is pres-
ent and should be clearly defined20. Osmolality
presents number of osmotically active particles
(osmoles) per kilogram of water. It can be mea-
sured, or it is calculated from theoretical osmolarity
with correction factor21.

Theoretical osmolarity is calculated using dif-
ferent formulas and different common osmotically
active particles. Previously there were formulas
calculating glucose, urea and sodium. Now, there are several formulas with more precise calculations and more active osmoles taken into account\(^2\).

Tonicity is effective osmolality and describes the distribution of the fluid thorough the body.

Summarized data important for everyday fluid prescription including osmolality, osmolarity and tonicity are presented in the Table 1.

Table 1. Fluid composition and characteristics.

<table>
<thead>
<tr>
<th>Parameter (mmol/L)</th>
<th>Plasma</th>
<th>0.9%NaCl</th>
<th>Hartman solution</th>
<th>5% Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>135-145</td>
<td>154</td>
<td>131</td>
<td>/</td>
</tr>
<tr>
<td>K</td>
<td>3.5-4.5</td>
<td>/</td>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>Ca</td>
<td>2.2-2.6</td>
<td>/</td>
<td>2</td>
<td>/</td>
</tr>
<tr>
<td>Cl</td>
<td>94-111</td>
<td>154</td>
<td>112</td>
<td>/</td>
</tr>
<tr>
<td>Mg</td>
<td>0.8-1.1</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Lactate</td>
<td>1-2</td>
<td>/</td>
<td>28</td>
<td>/</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>22-26</td>
<td>/</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>Glucose (g/L)</td>
<td>0.45-0.95</td>
<td>/</td>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>Osmolality (mosmol kg(^{-1})H(_2)O(^{-1}))</td>
<td>288</td>
<td>286</td>
<td>256</td>
<td>290</td>
</tr>
<tr>
<td>Theoretical osmolarity (mosmol L(^{-1}))</td>
<td>291</td>
<td>308</td>
<td>276</td>
<td>278</td>
</tr>
<tr>
<td>Tonicity</td>
<td>/</td>
<td>isotonic</td>
<td>isotonic</td>
<td>hypotonic</td>
</tr>
</tbody>
</table>

In this way, fluid bolus is rapid infusion for the correction of hypotensive state. Therefore, it is primarily used as therapeutic option. We use fluid challenge about 4ml/kg of fluid over 15min with the aim of gradually increasing circulatory filling pressure and distinguishing between responders and non-responders\(^2\). Therefore, it has primary diagnostic application.

Daily fluid balance is the daily difference between fluid input and output. Fluid balance can be calculated by subtracting urine, gastrointestinal and drainage output from the sum of all daily fluid inputs (intravenous, enteral fluid administration and blood products).

Cumulative fluid balance is the sum of fluid accumulation or positive daily fluid balance, over a period of time. Positive cumulative balance is associated with increased intraabdominal pressure\(^2\) and increased risk of renal failure\(^2\) and poor outcome\(^2\) in critical care patients.

Fluid overload is defined as a 10% increase in admission weight and/or developing of oedema, crackles, anasarca\(^2\). It is associated with an increased risk of mortality, prolonged hospitalization and changed outcome of critical care patients\(^2\). According to study of Kelm et al\(^2\) fluid related medical interventions (thoracocentesis, diuretics) are related to fluid overload.

Duration and de-escalation

Fluid therapy as a treatment has a duration, same as any other medication. One of the
consequences of fluid overload is interstitial fluid accumulation, which was experimentally studied by Guyton30, more than 50 years ago. Overzealous fluid resuscitation with positive fluid balance and elevated central venous pressure are risk factors for increased complications rate, increased length of ICU stays and higher mortality31. Cordemans et al25 emphasized that increased capillary leak index, extravascular water index and fluid balance are all associated with poor 28-day outcome. These authors suggested treatment pathway named PAL concept with the aim of achieving deresuscitation that should facilitate fluid elimination after initial resuscitation. In this way, Late Goal Directed Fluid Removal was introduced as a new idea in the critical care setting. In the systematic review32, late conservative fluid management was defined as two consecutive days of negative fluid balance in the first 7 days of ICU stay. This concept has been shown as an independent predictor of survival in ICU.

The idea of fluid overload repercussion on outcome, evolves further into different phases of critically ill patient treatment. Conceptual model of Hoste et al33 and ROSE model of Malbrain et al32 pointed out different phases of fluid treatment course in the critical care patients. These phases are resuscitation phase, optimization phase, stabilization phase and escalation phase. These phases are neatly connected with the patient’s course of illness. Recognizing each phase of fluid treatment course sets limits concerning the dose of the fluid.

Resuscitation phase

Early goal directed fluid therapy that was suggested by Surviving sepsis campaign2 is one treatment guideline of hemodynamic resuscitation. Another proposed treatment protocol is rapid bolus of 3-4ml/kg fluid given over 10-15 minutes in a repeated manner, if needed. Hemodynamic resuscitation should be considered together with the assumption of the loss of endothelial fluid barrier in the specific critical care state34. Furthermore, it should be emphasized that Hippensteel et al35 showed correlation between the amount of fluid given and the range of glycocalyx degradation and edema formation. On the other hand, avoidance of adequate fluid administration can lead to organ and system dysfunction.

In this way, accurate tapering of fluid dose in this phase is of utmost importance. Different monitoring methods are proposed. A simplified model of relevant monitoring can be achieved through monitoring preload and monitoring fluid response.

Preload monitoring is usually used to set primary information of the fluid status in a specific situation. Central venous pressure monitoring, mean arterial pressure, urine output and volumetric preload parameters like global end-diastolic volume index are frequently used.

Monitoring fluid response is the method used to differentiate patients, namely, to differentiate responders from non-responders22. It is usually done by means of measuring pulse pressure variation, stroke volume variation and passive leg raising. These parameters are important in the setting of the upper limit of fluid treatment in specific patients and specific moments. It presents the excellence in the area of prescribing dose of fluid and the area of technical innovation and raising paradigm. Fluid balance is positive in this phase.

Optimization phase

The optimization phase can be defined as the phase of compensated shock where the main aim is to limit consequences. Monitoring of fluid balance continues from the previous phase and usually includes data from different measuring parameters, such as central venous pressure, invasive arterial monitoring, mixed venous saturation, ultrasound diagnostics and others. According to Malbrain et al36, these parameters have to be combined with perfusion parameters (lactate, capillary refill time) to avoid potential difference in macrocirculation and microcirculation. In this phase, additional fluid should be given cautiously because decompensation is still highly possible.

Stabilization phase

The stabilization phase is a phase where a patient is no longer in the shock state. Replacement fluid therapy and maintenance therapy are indicated. Late conservative fluid management is the objective of this phase of the fluid treatment course.
Zero fluid balance or slightly negative balance are suggested\(^3\).

Evacuation phase

The evacuation phase is DE resuscitation phase where fluid removal is potentiated. Frequently, there is an increased spontaneous patient diuresis. Treatment methods are still being studied; however, diuretics, ultrafiltration and physical therapy are currently the ones used. Negative fluid balance is suggested.

ROSE concept of Malbrain and al\(^3\) encircle idea of fluid as the drug in the model of the 4D’s meaning Drug-Dose-Duration-De-escalation. The authors even further emphasized the idea on the in the new model of fluid stewardship named 7D’s: Definitions-Diagnosis- Drug-Dose-Duration-De-escalation-Discharge. In this model meaning of Ds is defined as \(^3\): Definitions (D1) comprise definition of fluid balance, fluid overload, Early adequate fluid management, Late conservative fluid management, Late Goal directed fluid removal.

Diagnosis (D2) meaning defining the problem as hypovolemia or hypervolemia.

Drug (D3) meaning all about fluid as the drug (when to start and stop, when to start and stop removal)

Dose (D4) as to Malbrain group\(^2\) the dose determines when the drug becomes poison.

Duration (D5) according to authors\(^3\) defined as to stop the fluids when they are not needed and start oral fluid intake.

De-escalation (D6) where fluid is removed and maintained to prevent hypoperfusion.

Discharge (D7) meaning the last step in fluid stewardship which enclose interventions, prevention of adverse reactions and cost reduction.

Side effects

There is potentiated importance of side effects of increased volume of fluid therapy, but also sodium and chloride overload. According to Regenmortel et al\(^3\), at least quarter of total administration of fluid volume at first 4 days after ICU admission comprises “fluid creep”\(\). The authors define “fluid creep” as:

- Fluid added as a vehicle for intravenous and enteral drugs.
- Fluid to which concentrated electrolytes are added for correction of electrolyte disorders
- Fluid (saline and 5% Glucose) that is added in small fluid volumes to keep the lines open.

In the study from 2021. the authors\(^3\) emphasized that there is also problem of sodium overload.

Table 2. Examples of sodium load in anti-infective therapy. The data presented in the table are transferred from the summaries of product characteristics presented by Medicines and Medical devices Agency of Serbia https://www.alims.gov.rs/eng/

<table>
<thead>
<tr>
<th>Drug/dose</th>
<th>Amount of sodium per dose mg/mmol</th>
<th>Antimicrobial therapeutic modality</th>
<th>Daily sodium administration with antimicrobial treatment modality (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meropenem 1g</td>
<td>208/4</td>
<td>1g/8h</td>
<td>12</td>
</tr>
<tr>
<td>Imipenem/Cilastatin 0.5g</td>
<td>37.6/1.6</td>
<td>0.5g /6h</td>
<td>6.4</td>
</tr>
<tr>
<td>Piperacillin/ Tazobactam 4g plus 0.5g</td>
<td>261/11.3</td>
<td>4.5g/8h</td>
<td>34</td>
</tr>
<tr>
<td>Metronidazol 0.5g</td>
<td>311/13.5</td>
<td>0.5g/8h</td>
<td>40.5</td>
</tr>
<tr>
<td>Kolistimetat natrijum 1x10^6 i.j.</td>
<td>23/1</td>
<td>3x10^6/8h</td>
<td>6</td>
</tr>
<tr>
<td>Ceftazidim 1g</td>
<td>52/2.3</td>
<td>2g/8h</td>
<td>13.8</td>
</tr>
</tbody>
</table>
According to authors, “sodium creep” is present combined with fluid overload, but it can exist solitary also. The main origin of increased sodium load is nested in maintenance fluid. Still, there is important burden of sodium loading during pharmacological prescription of different drugs. Important example of the previous is antimicrobial prescription and administration (Table 2).

According to the small prospective observational study of Bihari et al 39 there is association between positive cumulative sodium balance and increased length of mechanical ventilation.

Conclusion

Fluid management is one of the most sophisticated and most important issues in critically ill patients. The approach to fluid therapy has to be individualized in accordance with the patient, the disease and the actual state. New studies on changing comprehension of endothelial function and glycocalyx imply further changes and frequent update in this scientific area.

References

