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Summary

Traumatic brain injury (TBI) is a condition with a high morbidity and mortality rate. From a medical point of 
view, little can be done to prevent primary brain injuries. After the initial injury, a cascade of events at the cellu-
lar and molecular level, including cell swelling, changes in cell membrane permeability, influx of immune or in-
flammatory mediators, and release of excitatory neurotransmitters result in so-called “secondary” brain damage. 
Optimization in energy and protein provision has taken its place lately in the fundamental concept of treatment 
in critically ill patients with moderate and severe brain trauma, together with reducing intracranial pressure and 
prevention of hypotension and hypoxia.
Administration of medical nutrition adjusted to the phase of trauma in the right time of medical treatment, 
as well as choosing the most adequate method of nutrition with appropriate formulas, can decrease neuro in-
flammation, immunodeficiency and metabolic crisis. A particularly difficult and challenging task in patients 
with TBI are maintenance of glucoregulation and electrolyte balance, protein replacement, and fluid therapy. 
Therefore, medical nutrition plays a significant role in the recovery of neurotraumatized patients.
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 Introduction

Traumatic brain injury (TBI) is a structural bra-
in injury that occurs as a result of an external 

force transmitted to the head with disrupting the 
normal architecture and structure of the brain1,2. 
This type of injury represents a significant so-
cio-economic problem, resulting in high disability 
and mortality rate.2 It is often associated with mal-
nutrition, and these patients are in increased vul-
nerability of infection, they are prone to longer re-
covery and length of hospital stay. After an injury, 
a series of events follows, such as metabolic disor-
ders, ischemia, hypoxia and reduced blood flow 
through the brain parenchyma, all of which cause 
the so-called “secondary brain injury” that can be 
prevented or at least alleviated. Among other stra-
tegies, adequate nutrition plays an important role. 

Nutrition therapy, adequate glucoregulation 
and multimodal monitoring including the use of 
microdialysis catheter should be an integrated 
approach to patients with TBI in order to ensure 

adequate supply of oxygen, glucose and other nu-
trients to the nerve cells. The Glasgow Coma Scale 
(GCS), which has its own limitations such as sub-
jectivity and the inability to assess the verbal re-
sponse in intubated patients, remains one of the 
most frequently used scale for grading the severity 
of injuries3. 

The highest percentage of TBI, about 80% are 
mild with GCS 13-15, the 10% are moderate (GCS 
9-12), and around 10% are severe (GCS 3-8).3 Es-
timates of concurrent TBI in patients with primary 
traumatic SCI (spinal cord injury) range from 12.5 
to 74.2% according to data from The National Spi-
nal Cord Injury Statistical Center.4 Initial imaging 
is determined by the protocol to properly assess the 
patient with dual diagnosis and it always should 
be assumed in all TBI when there is a disorder of 
mental status or blunt injury above the clavicle5,6. 
The estimated annual incidence of TBI is about 1.7 
million, of which about 250.000 require hospital 
treatment.1 They are common among children and 
adolescents, as well as among people over 65 years 
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old. TBI is responsible for reducing the working 
capacity of 5-6.5 million people annually1.

Mechanisms of injury

In general, according to the mechanism of inju-
ry, TBI can be divided into closed-head and pen-
etrating. Closed-head injuries are caused by the 
blunt impact to the head. Penetrating injuries oc-
cur in conditions when a foreign body breaks the 
bones of the skull and penetrates the brain paren-
chyma (knife or bullet)3. In general, older patients 
have fewer physiological reserves, which makes 
the prognosis poor even for mild injuries7. 

Morbidity and mortality in neurosurgical in-
juries are closely related to increased intracranial 
pressure (ICP), the level of bleeding and contu-
sions, as well as edema of the brain parenchyma8,9. 
After the initial, primary injury, the brain’s energy 
needs increase, and this is achieved with oxidative 
metabolism of glucose. Inadequate supply of some 
of these substances leads to additional neurologi-
cal damage and the occurrence of “second” brain 
injury. In addition to ischemia and hypoxia, these 
secondary damages also occur as a result of meta-
bolic disorders, oxidative stress, immune dysfunc-
tion and increased permeability of blood-brain 
barrier10. Malignant brain edema has a particu-
larly poor prognosis because it is often refractory 
to therapy and causes irreversible changes with a 
mortality rate of near 100% if untreated11. 

At the cellular level, biochemical changes be-
gin within minutes of injury and progress over 
months12. After the acute phase, microglial cells 
remain active, and the process of neuro-inflamma-
tion continues which connects acute infection and 
chronic neurodegeneration, which are responsi-
ble for later cognitive disorders and development 
of dementia13. For these reasons, the prevention 
of secondary brain damage is crucial because it is 
something that can be prevented.

Hypermetabolism and hyper-catabolism after 
TBI occur as a consequence of the excessive se-
cretion of endogenous hormones such as catecho-
lamines and corticosteroids that antagonize the 
effect of insulin. This leads to hyperglycemia, loss 
of muscle mass, increased energy consumption, 
negative nitrogen balance and fluid and salt reten-
tion14. All of these are causes of immune disorders 
and an increased tendency of infection, sepsis and 

multi-organ dysfunction, which leads to prolonged 
ICU treatment, length of hospital stay and hospital 
costs15. The acute phase of hyper-catabolism can 
last several weeks, depending on the severity of 
trauma, then reaches maximum and a plateau after 
two months, which coincides with the beginning 
of the patient’s rehabilitation16. 

One of the facts is that the energy expenditure 
increases by 87-200%14. The peak for resting ener-
gy expenditure is around 4-5 days after trauma and 
remains elevated for the next 9-12 days17. Howev-
er, calculating energy requirement in acute phase 
is very challenging due to various factors such as 
an increase in body temperature, additional inju-
ries, presence and the severity of infection, use of 
mechanical ventilation, sedative and relaxants. To 
calculate energy requirements, ASPEN (American 
Society for Parenteral and Enteral Nutrition) and 
ESPEN (European Society for Parenteral and En-
teral Nutrition) recommend the use of indirect cal-
orimetry, whenever possible18,19. If it is not avail-
able, other published predictive equation can be 
used as Harris-Benedict, Ireton-Jones, Mifflin-St 
Jeor, or a basic weight-based equation (25-30 kcal/
kg)17. Also important, patients with TBI receive 
hyperosmolar solutions for reducing the ICP. This 
represents an additional challenge for clinicians to 
maintain adequate homeostasis of water and elec-
trolytes, which requires frequent monitoring their 
levels in the blood20. 

Methodology

Data sources and searches

By reviewing the available data on PubMed, 
Scopus, Google Scholar and Cochrane Library the 
latest data related to nutrition in neurotraumatized 
patients were summarized. More than 20 papers 
were reviewed, and the most important recom-
mendations are shown.

Nutrition therapy

a. Timing and route of feeding
In patients with moderate-to-severe TBI, op-

timizing nutrition by preventing malnutrition 
as well as using selected diet is a field that is still 
developing with the aim of mitigating secondary 
brain injury and promoting cellular recovery. For 
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now, there is little scientific evidence and recom-
mendations in this area due to rigorous clinical tri-
als and conflict data from the literature. 

Malnutrition often goes unrecognized in hospi-
talized patients, and it is thought that one third of 
patients develop this disorder at some point during 
hospitalization21. It is believed that the prevalence 
of malnutrition is around 78%10 and such a high 
prevalence is explained by catabolism induced by 
inflammatory cytokines during the critical phase 
of illness, where there is a mobilization of amino 
acids from skeletal muscles and negative nitrogen 
balance. Malnutrition is more often present in se-
vere trauma patients with lower GCS values. Im-
mobilization, dysphagia and insufficient caloric 
intake additionally contribute to malnutrition.22

b. Early vs. late nutrition
Although the definitions in literature vary, ear-

ly enteral nutrition (EN) is defined as one that is 
started in the first 24-48 h, while late is started af-
ter 48 h.18,19 The benefit of early enteral nutrition 
consists in preserving the integrity of gastrointesti-
nal mucosa, preventing the bacterial translocation 
and endotoxemia in systemic bloodstream, pre-
venting malnutrition and promoting neurological 
recovery, but due to inconsistency of data, signifi-
cant debate existed over aggressive early nutrition 
and how quickly to increased calorie. The EPaN-
IC study23 showed that early parenteral nutrition 
can have a negative impact on patient’s survival. In 
acute early phase of critical illness, at a time when 
the nutrition substrates cannot be utilized, should 
avoid overfeeding, preserve (adaptive) mitochon-
drial function (hibernation, autophagy).24 

Nevertheless, in severe TBI, numerous stud-
ies have proven the benefit of early EN in muscle 
mass preservation, promoting cerebral homeosta-
sis, improving endocrinologists factors, reducing 
inflammatory responses.25,26 If the level of con-
sciousness or using the mechanical ventilation 
does not allow oral diets, early nutrition within 
24-48 h and even 72 h is recommended according 
to ASPEN and ESPEN18,19. Brain Trauma Foun-
dation study27 showed that early EN and every 
10 kcal/kg/day increase in energy intake reduces 
mortality by 30-40%. Even though the evidence 
clearly points out the benefits of early EN, due 
to inconsistency of evidence, it is recommended 
that the basal energy needs can be reached by the 

fifth day, and at the latest by the seventh day after 
TBI.28 Some of the reasons for concern regarding 
early EN are related to the risk of aspiration pneu-
monia, gastrointestinal dysmotility and increased 
metabolic demand. 

c. Enteral vs. parenteral nutrition
Patients suffering from serious brain injury, to-

gether with other patients unable to take food by 
mouth, should meet their energy demands by spe-
cial enteral nutritive formulas through nasogastric 
or jejunal tubes, or parenteral nutritive solutions. 
Enteral formulas are mainly standardized as pol-
ymers, oligomers, and monomers. Patients treated 
with medical nutrition enriched with proteins and 
amino acids showed better wound healing, tissue 
recovery and biosynthesis of biologically active 
peptides than fasted patients.29

Decrease or discontinuation of enteral stimula-
tion leads to increase of proinflammatory cytokines 
in enterocytes, resulting in apoptosis, epithelial 
barrier disfunction and disturbance in enteral mi-
crobiome. Anatomical and functional changes in 
enteral epithelia increase the risk of nosocomial 
infections, prolonged hospital treatment, and mor-
tality18,19. Parenteral nutrition (PN) avoids diges-
tive system, has no protective effect on enterocytes, 
and increases the risk of infections. 

However, EN should not be administered to 
patients with hemodynamic instability, uncon-
trolled, life-threating hypoxemia, hypercapnia, ac-
idosis, active gastrointestinal bleeding, and bowel 
ischemia or bowel obstruction1,19. The mechanism 
implies increased mesenterial blood flow following 
EN, which leads to increased oxygen demands. In 
hemodynamically unstable patients this can lead 
to bowel ischemia, necrosis or perforation.30,31 On 
the other hand, in hemodynamically stabile pa-
tients both ASPEN and ESPEN favorize EN com-
paring to PN.18,19 

Current knowledge about medical nutrition 
undoubtably supports EN vs. PN mainly because 
of its protective effect on gastrointestinal mucosa, 
immune support, decreased risk of infections, and 
shorter stay in ICU. 

One of the leading problems with EN is a fre-
quent occurrence of gastrointestinal intolerance 
mostly manifested in diarrhea or decreased bowel 
motility, which often results in inconstant feeding 
and malnutrition. Studies showed that over 30% of 
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the patients with TBI do not receive targeted calorie 
intake, even when monitored by experienced and 
motivated intensivists. The estimation is that ap-
proximately 50% of the patients with TBI manifest 
some kind of gastrointestinal intolerance32. There 
are several identified factors in the background, 
and the most common are: prolonged gastric emp-
tying caused by increased intracranial pressure, 
impaired function of autonomic nervous system, 
and use of certain medications, such as opioids and 
phenobarbital32. Prolonged gastric emptying may 
increase residual gastric volume, which may cause 
aspirational pneumonia. Gastrointestinal hypoki-
nesia usually persists for 1-2 weeks after TBI on-
set.33 Paralytic ileus is a frequent complication of 
traumatized patients in general, especially with 
SCI and during prolonged immobilization. Early 
EN reduces the development of ileus.34

There are several strategies to improve EN tol-
erance: elevation of the headboard for 30—450 

C, transgastric jejunal feeding, continuous versus 
bolus feeding29,35, use of concentrated formulas 
(>1.5 kcal/ml)34, and administration of the drugs 
which stimulate gastrointestinal motility, as met-
oclopramide and erythromycin. ESPEN suggests 
that post-pyloric feeding should be used in pa-
tients resistant to prokinetic therapy18. The com-
mon opinion is that jejunal feeding should start 
only if technical conditions are fulfilled. 

There are no certain recommendations when to 
start EN in patients receiving vasopressors, but the 
literature considers that safe doses are lower than 
70.14 µ/kg/min noradrenaline, 3-10 µ/kg/min do-
pamine, and 12 µ/kg/min dobutamine36. 

A diet providing 10-20 kcal/hour is defined as 
trophic EN, and it may be sufficient to prevent en-
terocyte atrophy, as well as to maintain digestive 
system integrity. Some authors concluded that 
this type of diet (<600 kcal/day) within 48 h from 
TBI onset reduces the total number of days under 
mechanical ventilation and shortens the length of 
medical treatment without increasing the risk of 
complications compared to the patients who did 
not receive EN18,37. They highlight the beneficial 
effect of early trophic EN in patients with TBI. 

It is important to note that the decision whether 
to start EN or not should be made individually for 
each patient, based on clinical presentation, hemo-
dynamic stability, and the presence of contraindi-
cations or potential risks.

Parenteral nutrition (PN) is nutrition based on 
special solutions administrated through intrave-
nous lines in patients who have contraindications 
for EN. Otherwise, EN has the advantage over PN, 
considering that PN is associated with a higher risk 
of infections and prolonged medical treatment. A 
study comparing early PN (<48 h) with late PN 
(after day 8) showed faster recovery, fewer infec-
tious complications and less consumption of hos-
pital resources in the late PN group38.PN should 
be considered within days 3-5 of hospital treat-
ment in patients that have contraindications for 
EN19.The cause of the harmfulness of ultra-early 
PN is not fully understood, but it is familiar that 
excessive PN feeding increases the risk of bacterial 
infections39. PN is also associated with hepatotox-
icity and cholestasis, which are thought to result 
from impaired enterohepatic circulation40. Clini-
cal practice showed that patients receiving PN re-
quire more frequent monitoring of electrolytes and 
cardiac function. 

So far, there are no defined guidelines on when 
to start supplemental PN. ESPEN recommends it 
should be between days 4 and 7 of hospital treat-
ment, while ASPEN considers it should be be-
tween days 7 and 10, but only if it is not possible to 
achieve over 60% of the energy needs by EN18,19. 

Cerebral microdialysis is an invasive technique 
in which microcatheter is placed deep into the 
brain tissue. The microcatheter is a semi-permea-
ble membrane that allows the measurement of me-
tabolite concentrations in the extracellular fluid. 
Monitoring the levels of glucose, pyruvate, lactate, 
and glutamate, together with the measurement of 
intracranial pressure, cerebral oxygenation and 
EEG, may indicate certain clinical interventions 
that would prevent secondary brain damage. An 
increased lactate/pyruvate ratio coupled with de-
creased extracellular glucose levels may predict is-
chemic strokes, epileptic seizures and intracranial 
hypertension41. This type of monitoring is widely 
used in early detection of ischemia and metabolic 
crises in the brain. 

Glucose metabolism 

The brain plays an important role in glucose me-
tabolism41. Therefore, strokes, TBI and other neu-
rological injuries may cause impaired glucose me-
tabolism. Metabolic stress and hyper-catabolism 
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caused by surgery or glucocorticoids, catechola-
mines and glucagon excess result in an increase of 
resting energy expenditure up to 200%. This met-
abolic disorder leads to glycogenolysis and gluco-
neogenesis, often coupled with hyperglycemia, re-
sulting in excessive protein consumption, particu-
larly in muscles24,42. Despite the vital importance 
of glucose for ATP production, pronounced hyper-
glycemia may be harmful in several ways. Glucose 
can directly cause peroxidation of cellular mem-
branes43. Insulin resistance and prolonged hyper-
glycemia disrupt astrocyte metabolism and inhibit 
their proliferation44. This implies that maintaining 
blood glucose levels within certain limits improves 
the outcome in patients with TBI45. On the other 
hand, aggressive insulin therapy aiming to lower 
blood glucose levels may result in energy crisis 
(monitored by lactate/pyruvate ratio and gluta-
mate levels) and hypoglycemia in brain tissue46. 
The NICE-SUGAR study showed that patients 
with blood glucose levels of 4.5-6 mmol/L have 
more frequent hypoglycemic episodes than those 
with tolerated levels of <10 mmol/L47.

The lactate/pyruvate ratio reflects brain metab-
olism, and its increase may indicate mitochondrial 
dysfunction48 or reduced oxygen supply due to is-
chemia or hypoxia49.

A decreased concertation of glucose in the 
brain may result from various pathophysiolog-
ical mechanisms. Glucose levels lower than 0.7 
mmol/L measured by microcatheters in ischemic 
stroke lead to impaired brain metabolism50. A glu-
cose concentration <1 mmol/L is an independent 
risk factor for reduced cerebral blood flow (<35 
ml/100g/min).51

As the most important energy substrate for 
brain tissue, glucose supply has to remain in op-
timal range in order to preserve brain functions. 
Achieving this goal requires an understanding of 
the overall interaction between nutritional thera-
py, insulin therapy, and brain metabolism, which 
can be measured by bedside microcatheters, if nec-
essary. 

Current evidence indicates that lactates, ketone 
bodies, and branched-chain amino acids (BCAAs) 
may be preferred energy substrates during met-
abolic crises, in order to reduce the potentially 
harmful effects of insulin.

Considering all previous recommendations and 
evidence, the Brain Trauma Foundation suggests 

implementation of early EN, within 24 hours, with 
at least 50% of total energy needs met, with aggres-
sive progression to full calorie intake, depending 
on the presence of reduced glucose levels in the 
brain tissue and increase in the lactate/pyruvate 
ratio. So far, permissive hyperglycemia with blood 
glucose levels of 8-11 mmol/L is recommended by 
guidelines.52

Protein supplementation

The importance of protein far exceeds that of 
protein as a source of calories. They are the most 
important caloric nutrient for the recovery of a 
damaged brain, for maintaining adequate immune 
function and maintaining body weight. Most crit-
ically ill brain-injured patients have a high ratio 
of protein needs to total energy needs, and these 
needs are difficult to meet with standard EN. Ni-
trogen excretion increases independently of re-
placement and a stable level of nitrogen loss can 
last up to 4 weeks after trauma15.

ASPEN-SCCIM recommendations suggest 
starting EN with high-protein polymer formulas 
within 24-48 h after trauma in hemodynamically 
stable patients17. Energy needs in the acute phase 
are 25-30 kcal/kg/day, and protein needs can vary 
from 1.2-2 g/kg/day, and the share of protein in the 
total caloric intake should be 15-20%51.

Clinicians must know the amount and concen-
tration of protein they give to patients with head 
injury through enteral nutrition, because the in-
take of large amounts of protein and insufficient 
water, with moderate salt intake can be the reason 
for “tube feeding syndrome” characterized by hy-
pernatremia, azotemia and dehydration53,54.

The ketone body diet

Although it has long been known that such di-
ets are beneficial for children with resistant or rare 
metabolic causes of epilepsy, recent literature also 
recommends them for head trauma. This diet is 
high in fat, moderate in protein and very low in 
sugar. The theoretical mechanism of benefit in-
cludes providing alternative energy levels through 
ketone bodies, benefiting the maintenance of the 
gut microbiome, increasing lipid repair and stabili-
ty of the cell membrane, antioxidant effect and pre-
vention of mitochondrial dysfunction. The benefit 
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is attributed to the ability of ketone bodies to be 
resistant to oxidative stress and to maintain mito-
chondrial stability55,56.

Astrocytes play a major role in the regulation 
of oxidative metabolism in the brain and can ben-
efit from exogenously introduced ketone bodies. 
Given their perivascular localization, they are the 
main site of glucose uptake and metabolism. They 
produce lactates that participate in the transfer of 
oxidative metabolism in the brain57. In addition to 
lactate, astrocytes produce an additional amount 
of ketone bodies. From this, it is concluded that 
astrocytes can participate in the transfer of lactate 
and ketone bodies as a substrate in the oxidative 
metabolism of the brain and the maintenance of 
homeostasis in cases of excessive synaptic activi-
ty and ischemia that accompany acute brain dam-
age58. Administration of hypertonic lactate solu-
tion reduces ICP, glutamate level, increases glucose 
level in brain and increases blood flow through 
brain tissue16. It is even thought that this solution 
can replace mannitol and hypertonic saline (3% 
NaCl) in patients with TBI and increased ICP.

As there is not a sufficient number of studies 
and evidence for everything, this type of therapy 
remains in the domain of future research59. 

In addition, high concentrations of ketone bod-
ies reduce glutamate concentrations in the synap-
tic cleft, resulting in decreased neuronal excitabil-
ity60,61. Observational studies have shown, using 
a microdialysis catheter, that the concentration of 
ketone bodies is the highest immediately after the 
injury, and therefore ultra-early nutrition in this pe-
riod may have a harmful effect on these patients.62

Considering all the above, there are studies 
where succinate supplementation is mentioned. 
Local administration of succinate (preferably 
through a microdialysis catheter) reacts directly 
with the mitochondrial electron transport chain, 
improving brain metabolism and mitochondrial 
function itself. 63

Omega-3 fatty acids

Their use in the ICU is increasing, but their 
role in patients with head injuries is still unclear. 
Eicosanoid precursor fatty acids include omega-3 
polyunsaturated fatty acids such as eicosatetraeno-
ic acid (EPA) and docosahexaenoic acid (DHA). 
Their metabolites have anti-inflammatory activity, 

which is exactly the opposite of the effect of ome-
ga-6 fatty acids. At the site of injury or damage, 
these metabolites participate in killing and clean-
ing pathogens, reduce leukocyte infiltration and 
stimulate macrophages64. In addition, they inhib-
it the production of proinflammatory cytokines 
and chemokines. These metabolites reduce neu-
roinflammation and neuronal death in epilepsy65, 
Alzheimer’s disease66, SAH ischemic stroke67. 

A study by Hasadri et al. demonstrated that 
omega-3 fatty acids reduce mitochondrial dys-
function, cell apoptosis, glutamate-induced exci-
totoxicity, and inflammation caused by oxidative 
stress68. In the beginning, the diet contained al-
most the same ratio of omega-6 to omega-3 fatty 
acids, but recently this ratio has changed from 2:1 
to 8:1 in favor of omega-3 fatty acids, and where 
the proportion of fat 25-40%, i.e. 2-6 g/day of ome-
ga-3 fatty acids69.

So far, there is not a large number of rand-
omized controlled studies that have examined the 
use of omega-3 and omega-6 fatty acids in the re-
duction of secondary brain damage. Despite these 
limitations and knowing the good properties and 
already known mechanisms of action of omega-3 
FA, it is certain that in the future it will find a place 
in the treatment of neurotraumatized patients.

Other types of immunonutrition

Other immunonutrients include glutamine, 
arginine and ribonucleic acids, which are used in 
combination with omega-3 FA. It is believed that 
when given, they have a synergistic effect that is 
greater than when given separately, especially 
among oncological and surgical patients70,71,72. 
The role of immunonutrients is based on their 
anti-inflammatory effect and the provision of es-
sential nutrients such as glutamine and arginine, 
whose reserves are quickly consumed during ca-
tabolism. Glutamine plays a role in cell prolifera-
tion, as an element of ATP synthesis and glycogen-
esis, maintenance of acid-base status and as an im-
munomodulator70. Arginine serves as a substrate 
for the synthesis of several cellular proteins such as 
nitric oxide, polyamines, glutamic acid, ornithine, 
proline and creatine. Nucleotides and their me-
tabolite additionally stimulate the proliferation of 
lymphocytes and enhance the function of natural 
killer cells and macrophages73.
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Although it is known that immunonutrition has 
a place in the treatment of cancer and traumatized 
patients, the precise role of individual immunonu-
trients in specific diseases such as stroke and head 
injuries are still in the research stages. The 2016 
SCCIM AND ASPEN recommendations suggest 
immunonutrition in patients with TBI18,74.

Zinc and magnesium

Although it is known that zinc deficiency can 
be harmful, its supplementation is still more con-
troversial than TBI. Magnesium is thought to have 
more than a protective role in preventing excito-
toxicity and maintaining normal cell function after 
neurological injury75,76, but its supramaximal sup-
plementation is not part of daily practice.

Recent research highlights the role of adequate 
maintenance of gut microbiome homeostasis in 
neurological injuries by supporting the modula-
tion of immune, inflammatory and metabolic pro-
cesses via the microbiota-GIT-brain axis77.

Conclusion

Nutritional therapy is part of an integrated ap-
proach to the treatment of neurotraumatized pa-
tients. This approach includes early and optimized 
nutrition, control of glycemia and electrolytes, as 
well as multimodal monitoring using microdial-
ysis catheters in order to better optimize neuron 
metabolism and prevent neuron distress. This is 
the best way to prevent secondary brain damage 
and improve the outcome in the treatment of neu-
rotraumatized patients.

Early enteral feeding is novel useful in such in-
fants and is recommended by various associations. 
However, one should keep in mind slow gastric 
emptying as one of the consequences of increased 
ICP and implement strategies to improve it. If en-
teral nutrition is contraindicated, progressive par-
enteral nutrition within 3-7 days is recommended. 
Maintenance of the so-called “permissive glyce-
mia” with values   of 8-11 mmol/L and protein com-
pensation (15-20% of total energy needs, up to 2 g/
kg body weight) are also some of the ESPEN and 
ASPEN recommendations. Although it is known 
that immunonutrition has a place in the treatment 
of traumatized patients, the precise role of individ-
ual immunonutrients in specific diseases such as 

stroke and head injuries as well as the use of ke-
togenic diets are still in various stages of research.
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