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Abstract: In this article we are going to 
discuss imprecise randomness using the 
mathematics of partial presence. The mathematical 
explanations of imprecise randomness would 
actually be complete only if it is explained with 
reference to the Randomness- Impreciseness 
Consistency Principle. In this article, we have 
described imprecise randomness with reference to a 
numerical example of the two sample t- test. 
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1. Introduction 

If the realizations of a random 
variable are imprecise in the sense that two 
independent laws of randomness can define 
the presence level of values of the variable 
in a given interval, we would have to deal 
with the matters using the idea of imprecise 
randomness (Baruah (2012)). An apparently 
similar theory, the theory of fuzzy sets, is 
already in existence since 1965. In the 
theory of fuzzy sets, it had been accepted 
that the fuzzy sets do not conform to the 
classical measure theoretic formalisms. 
Secondly, it had been agreed upon that 
given a fuzzy set neither its intersection 
with its complement is the null set, nor its 
union with the complement is the universal 
set. In the Zadehian definition of 
complementation, fuzzy membership 
function and fuzzy membership value have 
been taken to be the same, and that is where 
the problem lies. Indeed fuzzy membership 
function and fuzzy membership value are 
two different things for the complement of 
a normal fuzzy set (Baruah (1999, 2011)). 
Instead of saying that the theory of fuzzy 
sets has been incorrectly explained, 
Baruah(Baruah (2012))has started the 
whole process anew naming his finding as 

the theory of imprecise sets.Fuzzy 
randomness in terms of uncertain 
probabilities has been studied by Buckley 
(Buckley (2003)) and Buckley and Eslami 
(Buckley &Eslami (2004))among others. 
Our approach is however different from 
their’s in the sense that we would be 
defining imprecise randomness using the 
Randomness- Impreciseness Consistency 
Principle together with our definition of 
complement of an imprecise set.  

Baruah has already established(Baruah 
(2012)) that every law of impreciseness can 
actually be expressed in terms of two laws of 
randomness, with randomness defined in the 
measure theoretic sense. In this article, we are 
going to discuss about testing statistical 
hypotheses with reference to imprecise 
randomness. 

 In what follows, we shall first 
discuss about Baruah’s Randomness- 
Impreciseness Consistency Principle andthe 
complement of an imprecise set. Thereafter 
we shall discuss the matters with reference 
to testing an imprecise hypothesis with 
reference to thetwo sample t- test. 

 

2. The Randomness- Impreciseness 
Consistency Principle 

A normal imprecise 
number [ ]γβα ,,=N  is associated with a 
presence level indicator function ( )xNµ , 
where  
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with a constant reference function 0 in the 
entire real line(Baruah (2012)). Here ( )x1ψ  
is continuous and non- decreasing in the 
interval [ ]βα , , and ( )x2ψ  is continuous and 
non- increasing in the interval [ ]γβ , , with  
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The imprecise number would be 
characterized by ( ){ }Rxxx N ∈:0,,µ , R 
being the real line. In the Dubois- Prade 
nomenclature, for a fuzzy number with 
fuzzy membership function ( )xNµ , ( )x1ψ  is 
called the Left Reference Function, and 

( )x2ψ  is called the Right Reference 
Function of the normal fuzzy number. 
Defining the operation called 
superimposition of sets and using the 
Glivenko- Cantelli Theorem (Loeve (1977)) 
on Order Statistic, Baruah(Baruah 
(2012))has established the following result.  

Theorem 1: For a normal imprecise 
number [ ]γβα ,,=N  with presence level 
indicator function  
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with constant reference function equal to 0, 
( )x1ψ  is the distribution function of a 

random variable defined in the interval 

[ ]βα , , and ( )x2ψ  is the complementary 
distribution function in the interval 
[ ]γβ , .Here, the term random variable has 
been used in the broader measure theoretic 
sense. It should be noted here that the 
notion of probability does not enter in to the 
measure theoretic definition of a random 
variable( Rohatgi&Saleh (2001)). 

3. The Complement of an Imprecise 
Number 

If a normal imprecise number 
[ ]γβα ,,=N  is defined with a presence 

level indicator function ( )xNµ , where  
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the complement cN  will have the 
membership function ( )xc

Nµ , where  

( ) ,,1 ∞<<∞−= xxc
Nµ  

with the condition that ( )xc
Nµ  is to be 

counted from ( )x1ψ , if βα ≤≤ x , from 
( )x2ψ , if γβ ≤≤ x , and from 0, otherwise. 

The definition of the complement of an 
imprecise set is based on the following 
axiom: 

Axiom 1: For a normal imprecise number 
( ){ }Rxxx N ∈:0,,µ  as defined above, the 

complement ( ){ }RxxxN N
c ∈= :1,,µ  will 

have constant presence level indicator 
function equal to 1, the reference function 
being ( )xNµ for ∞<<∞− x . 

25 
www.japmnt.com  

http://www.japmnt.com/


(JPMNT) Journal of Process Management – New Technologies, International 
Vol. 1, No.3, 2013. 
 

4. Imprecise Randomness 
 

 If the two laws of randomness 
defining impreciseness are indeed laws of 
probability, two possibilities can actually be 
there. When a non-rejectable hypothesis is 
made imprecise, there may still be a 
probability that the imprecise hypothesis 
would actually be found rejectable, the 
probability of rejection decided by the right 
reference function.  In the same way, if a 
rejectable hypothesis is made 
imprecise,theremay still be a probability 
that the imprecise hypothesis would be 
found non-rejectable, the probability of 
non-rejection being decided by the left 
reference function this time ( Baruah 
(2011)).. 

 Assume that X is a random variable 
following the normal probability law with 
mean μ and variance unity. Now if the 
parameter μ is imprecise, with membership 
defined in [μ - δ, μ, μ + δ], we would 
actually define an infinite number of 
normal probability density functions with 
location parameter ranging from (μ – δ) to 
(μ + δ ) with maximum membership 
assigned at the value μ. This is where the 
current definition of imprecise randomness 
ends. 

 Assume that we have asample of n 
observations x1, x2, ... ,xnfrom a normally 
distributed population with mean μ and 
variance σ2. We can then proceed to infer 
about the population, based on the sample 
data. Assume further that we have 
imprecise data and we need to proceed for 
statistical analysis with reference to 
imprecise randomness. 

The imprecise data are in terms of 
imprecise numbers around xi, i=1,2,…,n 
defined as, say,  

Xi = [xi - δ, xi, xi + δ], δ ≥ 0. 

The analysis can now proceed towards 
making an imprecise statistical analysis. 
Without any loss of generality, and for 

computational simplicity, such imprecise 
numbers are usually taken as triangular. 

It can be seen that from the distribution 
function ( )x1ψ , for ii xxx ≤≤−δ , we 
shall get the density function 

( ) ( )xx
dx
d

11 ϕψ = , say 

where 

( ) 11∫ =
β

α

ϕ dxx . 

In the same way, from thecomplementary 
distribution function ( )x2ψ , for 

δ+≤≤ ii xxx we shall get the density 
function  

( )( ) ( )xx
dx
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221 ϕψ =− , say, 

where 
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γ

β

ϕ dxx . 

Now, according to Baruah’s 
Randomness – Impreciseness Consistency 
Principle, a triangular imprecise number of 
the type 

[ ]δδ +−= iiii xxxX ,,  

with membership function 
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is in fact defined by two laws of 
randomness with distribution functions 

( ) ii
i xxxifxxxF ≤≤−
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and 

( ) ,,12 δ
δ
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and 

( ) δ
δ

+≤≤= ii xxxifxF
dx
d ,1

2  

are uniform. 
Accordingly, forimprecise randomness first, 
there should be a variable following some 
law of randomness. Secondly, in an interval 
around every realization of the random 
variable, there should be impreciseness. If it 
is presumed that the two laws of 
randomness are in fact two laws of 
probability, then the conclusions can be 
made probabilistically. 
 

5. Two samplet- Test with Imprecise Data 
 
We now cite a numerical example. The gain 
in weights (in kgs.)of pigs fed on two diets 
A and B are given below: 

Diet A: 49, 53, 51, 52, 47, 50, 52, 53 
Diet B: 51, 54, 51, 52, 49, 53, 53, 52 

Assume that the random samples have been 
collected from normal populations and the 
population variances are equal and 
unknown. Now we want to test whether the 
two diets differ significantly as regards 
their effect on increase in weight, 
i.e., BAH µµ =:0 , against the alternative 
hypothesis, BAH µµ ≠:1 .  
 Under 0H , the test statistic is given 
by 






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
+
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21

11
nn
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yx
t  

which follows the Student’s- t  probability 
law with ( )221 −+ nn  degrees of freedom, 

where x  and y is the sample means for diet 
Aand dietBrespectively and 2S  is the 
sample variance.  
 In our case, the calculated value of t
 is 1.083 which is less than the 
tabulated value of ti.e. 2.15 at 5% 
probability level of significance for 14 
degrees of freedom. Therefore we may 

conclude that there is no reason to reject the 
null hypothesis that the diets A and Bdoes 
not differ significantly as regards their 
effect on increase in weight. 

Let us now assume that the data are 
imprecise of the interval type 
[ ]1,,1 +− iii xxx and that the data are 
triangular. The random variable X of which 
x is a realization in the sample was assumed 
to be normally distributed. In other words, 
there is one law of randomness in 
[ ]ii xx ,1−  while there is another law of 
randomness in [ ]1, +ii xx , both of them 
being uniform, for a normally distributed 
realization xwith mean µ  and error 
variance 2σ , say. It should be noted here 
that for probabilistic conclusions based on 
imprecise random data, we would need to 
define that these two laws of randomness 
are indeed two probability laws in the 
statistical sense. 
 Thus the gain in weights (in kgs.) of 
pigs fed on two diets A and B with 
triangular membership functions are as 
follows: 

 
Diet A: [48, 49, 50], [52, 53, 54], [50, 51, 

52], [51, 52, 53], [46, 47, 48], [49, 50, 51], 
 [51, 52, 53], [52, 53, 54] 

Diet B: [50, 51, 52], [53, 54, 55], [50, 51, 
52], [51, 52, 53], [48, 49, 50], [52, 53, 54],  

[52, 53, 54], [51, 52, 53] 
 The null hypothesis would be  

0H : BA µµ =  
where Aµ  and Bµ  are the imprecise 
population means concerned. 
 The alternative hypothesis 

1H would be defined as discussed earlier. 
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Under 0H , we finally arrived at an imprecise value of Student’s- t statistic for 14 
degrees of freedom, with the following presence level indicator function: 
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Now, according to the Randomness- Impreciseness Consistency Principle this imprecise 
number gives the following two distribution functions 

( ) ( ) ( ) ( )( )
( ) 083.10;

448128
5675.201224644224218224218

2

22222

1 ≤≤
−

−−−+−−+−−
= x

x
xxxx

xψ  

and 

( )( ) ( ) ( )( ) ( )
( ) ∞≤≤

+−
+−++−+

−=− x
x

xxxx
x 083.1;

44848
6725.10075.285042242446725.100

11 2

22222

2ψ

 

This means, the imprecise 
number [ ]∞= ,083.1,0t  with left and right 
reference functions ( )x1ψ and ( )x2ψ  
defined in 083.10 ≤≤ x  and 

∞≤≤ x083.1 respectively, would be 

defined by the two densities ( )x
dx
d

1ψ  and 

( )( )x
dx
d

21 ψ−  in the respective ranges. It 

should be noted here that we have 
considered the left reference function of the 
variance at 3088.0=α so that the range of 
the variance should be positive. Again in 
computing the value of t, we have also 
considered the left reference function 
at 5.0=α  for keeping the range of the tas 0 
to ∞. 

 In the crisp or non- imprecise 
situation of the above example, we would 
have concluded that there is no reason to 

reject the null hypothesis of equality of the 
mean weights at 5% probability level of 
significance as the data dependent value of 
( )083.1=t  is smaller than the theoretical 

value of ( )15.2=t  for 14 degrees of 
freedom.We now proceed to look in to the 
matters of making an imprecise conclusion 
statistically. The tabulated non- imprecise 
value of tat 5% level of significance for 14 
degrees of freedom is 2.15, which lies 
between 1.083 to ∞ and the right of this 
tabulated value of t, i.e. 2.15, the area under 
the probability function oftis 0.025. 2.15 is 
on that part of the interval on which the 
right reference function is defined. The 
membership for t=2.15is ( )15.22ψ . Now, in 
our perspective the probability density 
function concerned would be given by 
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Therefore, the probability that 
15.2≥t would be the area under this 

probability density function for 15.2≥t , 
which is the area of the right tail beyond 
2.15.The area of the left tail from 1.083 to 
2.15 is ( )( )15.21 2ψ− . Thus the area of the 
right tail is ( )15.22ψ , which is no thing but 
the membership value of t at 2.15.Therefore 

( ) 708158.015.22 =ψ  is the probability that 
the imprecise null hypothesis would have to 
be rejected at 5% probability level of 
significance. In other words, when a non 
rejectable hypothesis is made imprecise, 
there may still be a probability that the 
imprecise hypothesis would actually be 
found rejectable. In the same way, if a 
rejectable hypothesis is made imprecise, 
there may still be a probability that the 
imprecise hypothesis would be found non- 
rejectable, the probability of non rejection 
being decided by the left reference function 
this time. 

6. Conclusions: 

Two laws of randomness are necessary and 
sufficient to define the partial presence of 
an element in a normal imprecise number.In 
this article, based on the Randomness- 
Impreciseness Consistency Principle, we 
have forwarded the definition of imprecise 
randomness. In testing of imprecise 
hypothesis, we deal with the alternative 
hypothesis which is the complement of the 
imprecise null hypothesis. We have shown 
that when a non rejectable hypothesis is 
made imprecise, there may still be a 
probability that the imprecise hypothesis 
would actually be found rejectable. In the 
same way if a rejectable hypothesis is made 
imprecise, there may still be a probability 

that the imprecise hypothesis would be 
found non- rejectable. 
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