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Abstract- In fuzzy clustering, unlike hard 
clustering, depending on the membership value, a 
single object may belong exactly to one cluster or 
partially to more than one cluster. Out of a number 
of fuzzy clustering techniques Bezdek’s Fuzzy C-
Means and Gustafson-Kessel clustering techniques 
are well known where Euclidian distance and 
Mahalanobis distance are used respectively as a 
measure of similarity. We have applied these two 
fuzzy clustering techniques on a dataset of 
individual differences consisting of fifty feature 
vectors of dimension (feature) three. Based on 
some validity measures we have tried to see the 
performances of these two clustering techniques 
from three different aspects- first, by initializing the 
membership values of the feature vectors 
considering the values of the three features 
separately one at a time, secondly, by changing the 
number of the predefined clusters and thirdly, by 
changing the size of the dataset.  

Keywords: Fuzzy c-means clustering, 
Gustafson-Kessel clustering, feature vectors, 
Euclidian distance, Mahalanobis distance, validity 
measures.   

1. Introduction 
 

Clustering is a process by means of which 
objects with similarities are placed to belong 
to same group called a cluster. In hard 
clustering an object is allowed to belong 
exactly to one cluster only. But with the 
advent of the concept of fuzzy set theory 
(FST) developed by Zadeh (1965) which 
particularly deals the situations pertaining to 
non-probabilistic uncertainty, the traditional 
hard clustering technique has unlocked a new 
way of clustering known as fuzzy clustering, 
where a single object may belong exactly to 
one cluster or partially to more than one 
cluster depending on the membership value of 
that object. A complete presentation of all 
aspects of FST is available in the work of 

Zimmermann (1991). The applications of FST 
in dealing with ambiguous problems where 
non-probabilistic uncertainty prevails have 
been reflected in the works of Dewit (1982) 
and Ostaszewski (1993). Baruah (2011a, 
2011b) has shown that the membership value 
of a fuzzy number can be expressed as the 
difference between the membership function 
and a reference function, and therefore the 
fuzzy membership function and the fuzzy 
membership value for the complement of a 
fuzzy set are not the same. Based on this 
concept, Das (2012) tried to modify the design 
of Park and Park (2010) and was able to 
overcome the limitations of their work by 
visualizing the complement of a fuzzy set in a 
correct manner. Derring and Ostaszewski 
(1995) have explained in their research work a 
method of pattern recognition for risk and 
claim classification. Bezdek (1981) has 
discussed in his Fuzzy C-Means (FCM) 
technique that the data to be analyzed must be 
in the form of numerical vectors called feature 
vectors, and the number of clusters must be 
predefined for obtaining the membership 
values of the feature vectors. Das (2013) has 
tried the FCM algorithm of Bezdek with three 
different distances namely Euclidean distance, 
Canberra distance and Hamming distance 
which revealed that out of the three distances, 
the algorithm produces the result fastest as 
well as the most expected when Euclidean 
distance is considered and the slowest as well 
as the least expected when Canberra distance 
is considered. Das and Baruah (2013) have 
shown the application of the FCM algorithm 
of Bezdek on vehicular pollution. Wang, 
Huang, Yao, Qian and Jiang (2011) have 
applied the Gustafson-Kessel (GK) clustering 
algorithm of Gustafson and Kessel (1979) in 
the pattern recognition for gas insulated 
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switchgear (GIS). Although a number of fuzzy 
clustering techniques are available in the 
literature, FCM and GK clustering techniques 
are well known for analyzing data which are in 
the form of numerical vectors. In both FCM 
and GK clustering techniques the number of 
clusters must be predefined but Euclidian 
distance and Mahalanobis distances are used 
respectively in FCM and GK as a measure of 
similarity. We have applied these two fuzzy 
clustering techniques on a dataset of individual 
differences (see table1) consisting of fifty 
feature vectors of dimension (feature) three. In 
our present work, based on three validity 
measures namely Partition Coefficient (PC), 
Clustering Entropy (CE) and Partition Index 
(PI) (see section3) we have tried to see the 
performances of these two clustering 
techniques from three different aspects- first, 
by initializing the membership values of the 
feature vectors considering the values of the 
three features separately one at a time, 
secondly, by changing the number of the 
predefined clusters and thirdly, by changing 
the size of the dataset. 

In Section 2, we shall provide the steps of 
FCM and GK algorithms. In Section 3, we 
explain our present work. The results and 
analysis of our work have been given in 
Section 4. Finally we put the conclusions in 
Section 5. 

2. Mathematical calculations of FCM 
and GK algorithms 
 

The basic task of a clustering technique is 
to divide n patterns, where n is a natural 
number , represented by vectors in a p-
dimensional Euclidean space,  into c, 2≤ c <n , 
categorically homogeneous subsets which are 
called clusters. Let the data set be  

X= {x 1, x2, ……….., xn },                       where 
xk ={ xk1, xk2, ……….., xkp },            k= 
1,2,3,……..,n. 

Each xk is called a feature vector and xkj 
where j=1,2,…..p is the jth feature of the kth 
feature vector. 

A partition of the dataset X into clusters is 
described by the membership functions of the 

elements of the cluster. Let S1, S2,…….,Sc 
denote the clusters with corresponding 
membership functions    

1Sµ , 
2Sµ  , …,  

cSµ . 

A c x n matrix containing the membership 
values of the objects in the clusters  

Ũ = nkcikx ,......,2,1,,.....,2,1S )]([
i ==µ   is a fuzzy c- 

partition if it satisfies the following conditions 
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Condition (1) says that each feature vector 
xk has its total membership value 1 divided 
among all clusters. Condition (2) states that the 
sum of membership degrees of feature vectors 
in a given cluster does not exceed the total 
number of feature vectors.  

In sections 2.1 and 2.2 we provide 
respectively the steps of FCM and GK 
algorithms. 

2.1 Bezdek’s FCM algorithm 

 Step 1: Choose the number of clusters, c, 
2≤c<n, where n is the total number of feature 
vectors. Choose m, 1≤ m <α. Define the vector 
norm ||   || (generally defined by the Euclidean 
distance) i.e. 

|||| ik vx −  = ∑
=

−
p

j
ijkj vx

1

2)(                  (3) 

where kjx is the jth feature of the kth feature 

vector, for k=1,2,……,n; j=1,2,….,p and ijv ,      

j-dimensional centre of the ith cluster for 
i=1,2,……,c; j=1,2,….,p; n, p and c denote the 
total number of feature vector , no. of features 
in each feature vector and total number of 
clusters respectively. 

Choose the initial fuzzy partition  

nkciks x
i ≤≤≤≤= 1,1

)0((0) )]([U µ  
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Choose a parameter ∈>0 (this will tell us 
when to stop the iteration). Set the iteration 
counting parameter l equal to 0. 

Step 2: Calculate the fuzzy cluster centers 

ci
l

iv ,.....,2,1
)( }{ =    given by the following formula 
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i = 1, 2 , ….. c;    k= 1, 2, , …..n.        (4) 

Step 3: Calculate the new partition matrix 
(i.e. membership matrix) 
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for i=1,2,……..,c and k=1,2,……..,n. If 
,)(l

ik vx = formula (5) cannot be used. In this 
case the membership function is 

iifk
ciiifkk

l
s x
i

=
=≠

+ = 1
,....,2,1,0

)1( {)(µ      (6)           

Step 4: Calculate  ∆ = |||| )()1( ll UU −+  

If  ∆ >∈, repeat steps 2, 3 and 4. Otherwise, 
stop at some iteration count*l . To make the 
result operational the fifth step had been 
introduced by Derring and Ostaszewski 
(1995). 

   Step 5: The final fuzzy matrix 
*lU is 

structured for operational use by means of the 
normalized α -cut, for some 0 < α< 1. All 
membership values less than α are replaced 
with zero and the function is renormalized 
(sums to one) to preserve partition condition   
(1). 

2.2 The GK algorithm 

Let n, p, c, m(>1),∈(>0) and A denote the 
total number of feature vectors , no. of features 
in each feature vector ,total number of clusters, 
the weighting exponent ,the termination 

tolerance and the norm- inducing matrix 
respectively for a given data set. 

Following are the steps of GK algorithm. 

Repeat for .,.........2,1=l   

Step 1: Compute the cluster prototypes 
(centers) : 
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Step 2: Compute the cluster covariance 
matrices: 
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Step 3: Compute the distances (Known as 
Mahalanobis distance): 
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, ci ≤≤1 , nk ≤≤1         
  
 Step 4: Update the partition matrix: 
for nk ≤≤1         
  
if 

iikAD > 0 for ci ≤≤1 , 
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Step 5 has been introduced in the same way as 
in FCM algorithm for operational use. 
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3. Our present work 
 

In our present work we have applied the 
FCM and GK algorithms on a dataset of 
individual differences(see table 1) which 
consists of fifty (50) feature vectors with three 
features namely Intelligent Quotient(IQ), 
Achievement Motivation(AM) and Social 
adjustment(SA) in each feature vector. We 
have tried to see the performances of these two 
clustering techniques on the same dataset 
using three validity measures PC, CE and PI 
from three different aspects- the initial 
membership values of the feature vectors, the 
no. of the predefined clusters and the size of 
the dataset. For this purpose first, we have 
executed both the algorithms thrice on the 
same dataset by initializing the membership 
values of the feature vectors considering the 
values of the features IQ, AM and SA 
separately one at a time in each round of 
execution. Secondly, both the algorithms have 
been executed thrice on the dataset by 
considering the no. of predefined clusters as 
four(04), three(03) and two(02) respectively 
for first , second and third execution. Thirdly, 
we have reduced the size of the dataset by 
ten(10) in each round and executed the FCM 
and GK algorithms for three times. To 
measure the performances of both the 
clustering techniques we have used three 
validity measures. The mathematical formulae 
of these three validity measures have been 
given in the following. 

(a) Partition Coefficient (PC): measures 
the overlapping between clusters. 
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(b) Clustering Entropy (CE):  measures 

the fuzziness of the cluster partition 
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(c) Partition Index (PI): is the ratio of the 

sum of the compactness and separation of the 
clusters. 
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Table 1: Data set of individual differences of fifty(50) feature 
vectors with dimension(feature) three(03). 

FV IQ AM SA FV IQ AM SA 

1 91 18 55 26 110 18 55 

2 85 16 40 27 100 16 40 

3 120 19 74 28 100 18 75 

4 90 18 75 29 70 14 30 

5 92 17 74 30 105 17 55 

6 82 17 55 31 79 14 35 

7 95 19 75 32 80 15 34 

8 89 18 74 33 125 20 75 

9 96 19 75 34 100 19 75 

10 90 17 55 35 125 19 85 

11 97 16 54 36 80 18 60 

12 125 21 74 37 85 18 70 

13 100 19 75 38 145 25 90 

14 90 17 54 39 80 18 74 

15 100 18 84 40 92 17 55 

16 95 19 75 41 120 18 70 

17 130 23 85 42 145 30 80 

18 130 19 75 43 95 18 50 

19 90 17 55 44 80 16 36 

20 91 17 56 45 90 17 55 

21 140 22 82 46 115 23 84 

22 92 18 75 47 100 18 80 

23 101 18 55 48 80 14 35 

24 85 16 54 49 105 19 75 

25 97 19 54 50 120 21 74 

FV: feature Vector, IQ: Intelligent Quotient,                 
AM:Achievement motivation, SA: Social adjustment 
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4. Results and analysis 
 

In this section we place the results 
obtained in our work and an analysis of these 
results. The graphical representations of the 
membership values (full or partial) of the 
feature vectors in the final clusters obtained in 
different executions have been given in figures 
1 to 20. In table2 we have recorded the values 
of different validity measures of FCM 
algorithm when the membership values of the 
feature vectors are initialized with different 
features at different no. of clusters. The same 
for GK algorithm have been recorded in 
table3. The values of different validity 
measures of FCM and GK algorithms at 
different sizes of dataset have been given in 
table4 and table5 respectively. 

 

Table 2: The values of different validity measures of FCM 
algorithm with different features for initializing the membership 
values at different no. of clusters 

 

Feature C Itn PC CE PI 

IQ 4 6 0.90248 0.14535 0.03908 

AM 4 8 0.93592 0.09099 0.06822 

SA 4 6 0.92743 0.1033 0.06726 

IQ 3 5 0.92794 0.10711 0.07536 

AM 3 6 0.92721 0.10793 0.07995 

SA 3 5 0.92147 0.11724 0.07775 

IQ 2 4 0.86863 0.18854 0.11705 

AM 2 2 0.85763 0.20356 0.13537 

SA 2 3 0.85774 0.20341 0.15277 

C: the no. of predefined clusters, Itn: the no. of iterations to 
reach the final clusters. 

 

Table 3: The values of different validity measures of GK 
algorithm with different features for initializing the membership 
values at different no. of clusters 

 

 

Feature C Itn PC CE PI 

IQ 4 11 0.85852 0.20914 0.05578 

AM 4 5 0.83772 0.23248 0.11549 

SA 4 5 0.77931 0.32711 0.07821 

IQ 3 6 0.79372 0.30356 0.14256 

AM 3 7 0.85369 0.21217 0.33906 

SA 3 5 0.92444 0.10967 0.20339 

IQ 2 6 0.82051 0.26268 0.5176 

AM 2 4 0.73348 0.38106 0.27783 

SA 2 4 0.80529 0.28523 0.28288 

C: the no. of predefined clusters, Itn: the no. of iterations to 
reach the final clusters. 

 

Table 4:  The values of different validity measures of FCM at 
different sizes of dataset. 

 

FCM ALGORITHM 

N C Itn PC CE PI 

50 4 6 0.90248 0.14535 0.03908 

40 4 5 0.91737 0.12211 0.0387 

30 4 5 0.92787 0.11276 0.03779 

N: the size of the datasets, C: the no. of predefined clusters, Itn: 
the no. of iterations to reach the final clusters. 

Table 5: The values of different validity measures of GK at 
different sizes of dataset 

 

GK ALGORITHM 

N C Itn PC CE PI 

50 4 11 0.85852 0.20914 0.05578 

40 4 
No output as the norm inducing  matrix 
becomes singular 

30 4 
No output as the norm inducing  matrix 
becomes singular 

N: the size of the datasets, C: the no. of predefined clusters, Itn: 
the no. of iterations to reach the final clusters. 
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Based on the values recorded in table 1, 2, 
3, 4 and 5 we have tried to analyze the 
performances of each algorithm separately 
from all three aspects i.e. when the 
membership values of the feature vectors are 
initialized considering the values of the 
features one at a time, when the no. of the 
predefined clusters is changed and when the 
size of the dataset is reduced. Next we have 
tried to compare the performances of both the 
algorithms for each of these three aspects. In 
our analysis we have also considered the no. of 
iterations required by both the algorithms to 
reach the final clusters in different executions. 
The graphical representations of all these 
analysis have been given in figures 21 to 49. 

A classification algorithm which exhibits 
greater value of Partition Coefficient (PC) and 
smaller values of Classification Entropy (CE) 
and Partition Index (PI) is considered to have 
better performance.  

The no. of cluster wise performances of 
FCM when the membership values of the 
feature vectors are initialized with different 
features have been shown in figures 21, 22 and 
23. It is seen that when the no. of clusters is 4 
FCM performs better with feature AM, when 
the no. of clusters is 3 it performs better with 
feature IQ and when the no. of clusters is 2 it 
performs better with feature IQ. Again the 
feature wise performances of FCM at different 
no. of clusters have been shown in figures 24, 
25 and 26. In these figures we see that with 
feature IQ FCM has better performance when 
the no. of clusters is 3, with feature AM it has 
better performance when the no. of clusters is 
4, and with feature SA it has better 
performance when the no. of clusters is 4.    
Similar performances of GK algorithm based 
on these two aspects have been shown in 
figures 27 to 29 and figures 30 to 32 
respectively. These reveal that when the no. of 
clusters is 4 GK performs better with feature 
IQ, when the no. of clusters is 3 it performs 
better with feature SA and when the no. of 
clusters is 2 it has better performance with 
feature IQ. Again with feature IQ GK 
performs better when the no. of clusters is 4, 
with feature AM it performs better when the 

no. of clusters is 3 and with feature SA it has 
better performance when the no. of cluster is 3. 

In figures 33 to 41 we provide the 
comparison of different validity measures of 
both the algorithms. It is seen that almost in all 
the cases FCM has better performance except 
in one where GK performs partially better (see 
figure 38).  

We have provided the graphical 
representations of different validity measures 
and the no. of iterations of FCM at different 
sizes of datasets respectively in figures 48 and 
49. It is seen that FCM performs better when 
the size of the dataset is 30. Also it performs 
faster when the dataset’s size is 40 and 30. On 
the other hand the performance of GK 
algorithm deteriorates significantly when the 
size of the dataset becomes very small as the 
respective norm inducing matrix becomes 
singular (see table5). 

From iterations point of view GK 
performs faster when initialized with feature 
AM and the no. of clusters is 4 (figures 43 and 
45). It also performs faster when initialized 
with feature SA and the no. of clusters is 4 
(figures 44 and 45). In rest of the cases FCM 
performs faster.     

     

 

 

 

Figure 1: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature IQ and no. of clusters is 4. 
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Figure 2: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature AM and no. of clusters is 4. 

 

 

 

Figure 3: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature SA and no. of clusters is 4. 

 

 

 

Figure 4: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature IQ and no. of clusters is 3. 

 

 

 

 

Figure 5: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature AM and no. of clusters is 3. 

 

 

 

 

Figure 6: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature SA and no. of clusters is 3. 

 

 

 

Figure 7: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature IQ and no. of clusters is 2. 
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Figure 8: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature AM and no. of clusters is 2 

 

 

 

 

 

Figure 9: Graphical representation of the membership values of 
feature vectors produced by GK algorithm when initialized with 
feature SA and no. of clusters is 2 

 

 

 

Figure 10: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature IQ and no. of clusters is 4. 

 

 

 

 

Figure 11: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature AM and no. of clusters is 4 

 

 

 

Figure 12: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature SA and no. of clusters is 4 

 

 

 

 

Figure 13: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature IQ and no. of clusters is 3 

 



(JPMNT) Journal of Process Management – New Technologies, International 
Vol. 1, No.4, 2013. 

 

9 

www.japmnt.com  

 

 

Figure 14: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature AM and no. of clusters is 3 

 

 

 

Figure 15: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature SA and no. of clusters is 3 

 

 
 

 

Figure 16: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature IQ and no. of clusters is 2 

 

 

 

 

Figure 17: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature AM and no. of clusters is 2 

 

 

 

Figure 18: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature SA and no. of clusters is 2 

 

 

Figure 19: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature IQ, no. of clusters is 4 and no. of feature vectors is 
40 
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Figure 20: Graphical representation of the membership values of 
feature vectors produced by FCM algorithm when initialized 
with feature IQ, no. of clusters is 4 and no. of feature vectors is 
30 

 

 

 

Figure 21: Comparison of the values of different validity 
measures of FCM algorithm with different features for 
initializing the membership values when the   no. of clusters is 
4. 

 

 

 

Figure 22: Comparison of the values of different validity 
measures of FCM algorithm with different features for 
initializing the membership values when the   no. of clusters is 
3. 

 

 

 

Figure 23: Comparison of the values of different validity 
measures of FCM algorithm with different features for 
initializing the membership values when the   no. of clusters is 
2. 

 

 

 

 

 

Figure 24: Comparison of the values of different validity 
measures of FCM algorithm at different no. of clusters when the 
feature for initializing the membership values is IQ. 

 

 

 

Figure 25: Comparison of the values of different validity 
measures of FCM algorithm at different no. of clusters when the 
feature for initializing the membership values is AM. 
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Figure 26: Comparison of the values of different validity 
measures of FCM algorithm at different no. of clusters when the 
feature for initializing the membership values is SA. 

 

 

 

 

Figure 27: Comparison of the values of different validity 
measures of GK algorithm with different features for initializing 
the membership values when the   no. of clusters is 4. 

 

 

 

Figure 28: Comparison of the values of different validity 
measures of GK algorithm with different features for initializing 
the membership values when the   no. of clusters is 3. 

 

 

 

Figure 29: Comparison of the values of different validity 
measures of GK algorithm with different features for initializing 
the membership values when the   no. of clusters is 2. 

 

 

 

 

Figure 30: Comparison of the values of different validity 
measures of GK algorithm at different no. of clusters when the 
feature for initializing the membership values is IQ 

 

 

 

Figure 31: Comparison of the values of different validity 
measures of GK algorithm at different no. of clusters when the 
feature for initializing the membership values is AM 
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Figure 32: Comparison of the values of different validity 
measures of GK algorithm at different no. of clusters when the 
feature for initializing the membership values is SA 

 

 

 

Figure 33: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is IQ and the no. of cluster is 
4 

 

 

 

Figure 34: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is AM and the no. of cluster 
is 4 

 

 

Figure 35: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is SA and the no. of cluster is 
4 

 

 

 

 
Figure 36: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is IQ and the no. of cluster is 
3 

 

 

 

 
Figure 37: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is AM and the no. of cluster 
is 3 
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Figure 38: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is SA and the no. of cluster is 
3 

 

 

Figure 39: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is IQ and the no. of cluster is 
2 

 

 

 

Figure 40: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is AM and the no. of cluster 
is 2 

 

 

Figure 41: Comparison of the values of different validity 
measures of FCM and GK algorithm when the feature for 
initializing the membership values is SA and the no. of cluster is 
2 

 

 

Figure 42: Comparisons of the no. of iterations of FCM and GK 
algorithm at different no. of clusters when the feature for 
initializing the membership values is IQ 

 

 

 

 

Figure 43: Comparisons of the no. of iterations of FCM and GK 
algorithm at different no. of clusters when the feature for 
initializing the membership values is AM 
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Figure 44: Comparisons of the no. of iterations of FCM and GK 
algorithm at different no. of clusters when the feature for 
initializing the membership values is SA 

 

 

 

 

Figure 45: Comparisons of the no. of iterations of FCM and GK 
algorithm with different features for initializing the membership 
values and when the no. of clusters is 4 

 

 

 

 

Figure 46: Comparisons of the no. of iterations of FCM and GK 
algorithm with different features for initializing the membership 
values and when the no. of clusters is 3 

 

 

 

Figure 47: Comparisons of the no. of iterations of FCM and GK 
algorithm with different features for initializing the membership 
values and when the no. of clusters is 2 

 

 

 

Figure 48:  Comparisons of the values of different validity 
measures of FCM algorithm  at different sizes of dataset. 

 

 

 

 

Figure 49:  Comparisons of the no. of iterations of FCM 
algorithm at different sizes of dataset. 
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5. Conclusions 
 

The results of our present work reveal that 
the performances of both FCM and GK 
algorithms depend on the initial membership 
values of the feature vectors, the no. of the 
predefined clusters and the size of the dataset. 
These performances do not show any specific 
rule for the first two aspects but for the third 
one. The performance of FCM increases as the 
size of the dataset reduces. On the other hand 
GK algorithm does not perform well when the 
size of the dataset is very small as the 
respective norm inducing matrix becomes 
singular. However the overall performance of 
FCM is better as compared to that of GK on 
the dataset we have used.  
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