(JPMNT) Journal of Process Management — New Tedgies, International

Vol. 1, No.4, 2013.

A COMPARISON OF TWO FUZZY CLUSTERING TECHNIQUES

Samarijit Das,and Hemanta K. Barugh,

!Department of Computer Science & IT, Cotton Colleygsam, India

’Department of Statistics, Gauhati University, Assardia

'ssaimm@rediffmail.copfhemanta _bh@yahoo.com

Abstract- In fuzzy clustering, unlike hard
clustering, depending on the membership value, a
single object may belong exactly to one cluster or
partially to more than one cluster. Out of a number
of fuzzy clustering techniques Bezdek’'s Fuzzy C-
Means and Gustafson-Kessel clustering techniques
are well known where Euclidian distance and
Mahalanobis distance are used respectively as a
measure of similarity. We have applied these two
fuzzy clustering techniques on a dataset of
individual differences consisting of fifty feature
vectors of dimension (feature) three. Based on
some validity measures we have tried to see the
performances of these two clustering techniques
from three different aspects- first, by initialigithe
membership values of the feature vectors
considering the values of the three features
separately one at a time, secondly, by changing the
number of the predefined clusters and thirdly, by
changing the size of the dataset.
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1. Introduction

Clustering is a process by means of which
objects with similarities are placed to belong
to same group called a cluster. In hard
clustering an object is allowed to belong
exactly to one cluster only. But with the
advent of the concept of fuzzy set theory
(FST) developed by Zadeh (1965) which
particularly deals the situations pertaining to
non-probabilistic uncertainty, the traditional
hard clustering technique has unlocked a new
way of clustering known as fuzzy clustering,
where a single object may belong exactly to
one cluster or partially to more than one
cluster depending on the membership value of
that object. A complete presentation of all
aspects of FST is available in the work of

Zimmermann (1991). The applications of FST
in dealing with ambiguous problems where
non-probabilistic uncertainty prevails have
been reflected in the works of Dewit (1982)
and Ostaszewski (1993). Baruah (2011a,
2011b) has shown that the membership value
of a fuzzy number can be expressed as the
difference between the membership function
and a reference function, and therefore the
fuzzy membership function and the fuzzy
membership value for the complement of a
fuzzy set are not the same. Based on this
concept, Das (2012) tried to modify the design
of Park and Park (2010) and was able to
overcome the limitations of their work by
visualizing the complement of a fuzzy set in a
correct manner. Derring and Ostaszewski
(1995) have explained in their research work a
method of pattern recognition for risk and
claim classification. Bezdek (1981) has
discussed in his Fuzzy C-Means (FCM)
technique that the data to be analyzed must be
in the form of numerical vectors called feature
vectors, and the number of clusters must be
predefined for obtaining the membership
values of the feature vectors. Das (2013) has
tried the FCM algorithm of Bezdek with three
different distances namely Euclidean distance,
Canberra distance and Hamming distance
which revealed that out of the three distances,
the algorithm produces the result fastest as
well as the most expected when Euclidean
distance is considered and the slowest as well
as the least expected when Canberra distance
is considered. Das and Baruah (2013) have
shown the application of the FCM algorithm
of Bezdek on vehicular pollutionWang,
Huang, Yao, Qian and Jiang (2011) have
applied the Gustafson-Kessel (GK) clustering
algorithm of Gustafson and Kessel (1979) in
the pattern recognition for gas insulated
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switchgearGIS). Although a number of fuzzy
clustering techniques are available in the
literature, FCM and GK clustering techniques
are well known for analyzing data which are in
the form of numerical vectors. In both FCM
and GK clustering techniques the number of
clusters must be predefined but Euclidian
distance and Mahalanobis distances are used
respectively in FCM and GK as a measure of
similarity. We have applied these two fuzzy
clustering techniques on a dataset of individual
differences (see tablel) consisting of fifty
feature vectors of dimension (feature) three. In
our present work, based on three validity
measures namely Partition Coefficient (PC),
Clustering Entropy (CE) and Partition Index
(PI) (see section3) we have tried to see the
performances of these two clustering
techniques from three different aspects- first,
by initializing the membership values of the
feature vectors considering the values of the
three features separately one at a time,
secondly, by changing the number of the
predefined clusters and thirdly, by changing
the size of the dataset.

In Section 2, we shall provide the steps of
FCM and GK algorithms. In Section 3, we
explain our present work. The results and
analysis of our work have been given in
Section 4. Finally we put the conclusions in
Section 5.

2. Mathematical calculations of FCM
and GK algorithms

The basic task of a clustering technique is
to divide n patterns, where n is a natural
number , represented by vectors in a p-
dimensional Euclidean space, into €,2<n,
categorically homogeneous subsets which are
called clusters. Let the data set be

X={X1, X2y veuveeennnn % b where
Xk ={ Xkty X2y «evvneenne %o b k=
1,2,3,........ N

Each x is called a feature vector ang x
where j=1,2,.....p is the"jfeature of the &
feature vector.

A partition of the dataset X into clusters is
described by the membership functions of the

2

elements of the cluster. Let;,SS,,....... S
denote the clusters with corresponding

membership functions g , ts ..., Hs, -

(s

A ¢ x n matrix containing the membership
values of the objects in the clusters

partition if it satisfies the following conditions

Do (%) =1 for

i=1

each k=1,2,....,n. (1)

0<> p (%)<n for
k=1

eachi=1,2,.....c 2)

Condition (1) says that each feature vector
Xk has its total membership value 1 divided
among all clusters. Condition (2) states that the
sum of membership degrees of feature vectors
in a given cluster does not exceed the total
number of feature vectors.

In sections 2.1 and 2.2 we provide
respectively the steps of FCM and GK
algorithms.

2.1 Bezdek’'s FCM algorithm

Step 1: Choose the number of clusters, c,
2<c<n, where n is the total number of feature
vectors. Choose m<im <a. Define the vector
norm || |(generally defined by the Euclidean
distance) i.e.

Ika—vi||=1/Z(xkj—vi,-)2

where xis the J' feature of the R feature

(3)

vector, for k=1,2,...... N =12,....,p ang;,
j-dimensional centre of the™icluster for

i=1,2,...... ,C; j1=1,2,....,p; n, p and c denote the
total number of feature vector , no. of features
in each feature vector and total number of

clusters respectively.

Choose the initial fuzzy partition

U@ = [/JSi © (Xk)]]s i<clsksn
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Choose a parameter>0 (this will tell us
when to stop the iteration). Set the iteration
counting parametdrequal to 0.

Step 2: Calculate the fuzzy cluster centers

v =k for
> (1, (%)
k=1
i=1,2, ... c, k=1,2,, ... n. (4)

Step 3: Calculate the new partition matrix
(i.e. membership matrix)

U 9 :[,US (I+l)(xk)]:|si5c,:lsksn ’ where
‘ 1
1P (%) = 7 )
Z( | ”)m -1
H&V“H
for i=1,2,........ ,c and k=1,2,........ N |If
X, :Vi('),formula (5) cannot be used. In this

case the membership function is
1+1 ifk =i
/’lg( )(Xk) ={ ke i=12..c (6)
Step 4: Calculate A= |JU™ -U® ||

If A >[J, repeat steps 2, 3 and 4. Otherwise,
stop at some iteration count To make the
result operational the fifth step had been
introduced by Derring and Ostaszewski
(1995).

Step 5: The final fuzzy matrixU' is
structured for operational use by means of the
normalizeda -cut, for some < a< 1. All
membership values less thanare replaced
with zero and the function is renormalized
(sums to one) to preserve partition condition

(2).

2.2 The GK algorithm

Let n, p, ¢, m(>1)J(>0) and A denote the
total number of feature vectors , no. of features

in each feature vector ,total number of clusters,
the weighting exponent ,the termination

Vol. 1, No.4, 2013.

tolerance and the norm- inducing matrix
respectively for a given data set.

Following are the steps of GK algorithm.

Repeat for| =12,.........

Step 1. Compute the cluster prototypes
(centers) :

S0 = 2%

v z (! (-0

Step 2: Compute the cluster covariance
matrices:

l<i<c

noog-nm | |
D G N

! zk 1( (=)™

1<i<c

Step 3: Compute the distances (Known as
Mahalanobis distance):

|kA1 _(Xk_V(l) A (X, _Vl))

1
where A = p det(F)"F™, (0, =1 usually)

,1<i<c,1<k<n

Step 4: Update the partition matrix:

for1<k<n
if Dy, >0forls<is<c,

M = 1

ik c !

Z:]-:l(DikA1 /DjkAj )2/(m Y
Otherwise
() _ paifk=i

/’Iik - ]affi¢|| i=12....c

until [JU® -U D |k,

Step 5 has been introduced in the same way as
in FCM algorithm for operational use.
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3. Our present work

In our present work we have applied the

individual differences(see table 1) which  vectorswith dimension(feature) three(03).

consists of fifty (50) feature vectors with three

features namely Intelligent Quotient(IQ),

Achievement Motivation(AM) and Social

adjustment(SA) in each feature vector. We
have tried to see the performances of these two
clustering techniques on the same dataset
using three validity measures PC, CE and PI
from three different aspects- the initial

membership values of the feature vectors, the
no. of the predefined clusters and the size of
the dataset. For this purpose first, we have
executed both the algorithms thrice on the
same dataset by initializing the membership
values of the feature vectors considering the
values of the features 1Q, AM and SA

separately one at a time in each round of
execution. Secondly, both the algorithms have
been executed thrice on the dataset by
considering the no. of predefined clusters as
four(04), three(03) and two(02) respectively

for first , second and third execution. Thirdly,

we have reduced the size of the dataset by
ten(10) in each round and executed the FCM
and GK algorithms for three times. To

measure the performances of both the
clustering techniques we have used three
validity measures. The mathematical formulae
of these three validity measures have been

given in the following.
(a) Partition Coefficient (PC): measures
the overlapping between clusters.
_1$S
PC(c —_ZZ(MJ‘)
N =
(b) Clustering Entropy (CE): measures
the fuzziness of the cluster partition
_ 1 C n Fy:
CE(c _EZZ'UH log(y; ) :
i=1 j=1

(c) Partition Index (PI): is the ratio of the
sum of the compactness and separation of the
clusters.
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pi(e) =3 24" 1% v

i=1

C
n Zkzllle Vi ”2

FCM and GK algorithms on a dataset of Table 1: Data set of individual differences of\f{fi0) feature

FV | 1Q AM |SA |FV |IQ AM |SA

1 91 18 55|26 | 110 | 18 55
2 85 16 40 | 27 | 100 | 16 40
3 120 | 19 74| 28 | 100 | 18 75
4 90 18 75129 | 70 14 30
5 92 17 74| 30 | 105 | 17 55
6 82 17 55131 | 79 14 35
7 95 19 751 32 | 80 15 34
8 89 18 74133 | 125| 20 75
9 96 19 75| 34 | 100 | 19 75
10 | 90 17 55|35 | 125 | 19 85
11 | 97 16 541 36 | 80 18 60
12 | 125 21 74 | 37 | 85 18 70
13 | 100 | 19 75|38 | 145| 25 90
14 | 90 17 54139 | 80 18 74
15 | 100 | 18 84|40 | 92 17 55
16 | 95 19 75| 41 | 120 | 18 70
17 | 130 | 23 85|42 | 145| 30 80
18 | 130 | 19 75| 43 | 95 18 50
19 | 90 17 55| 44 | 80 16 36
20 | 91 17 56 | 45 | 90 17 55
21 | 140 | 22 82| 46 | 115| 23 84
22 | 92 18 75| 47 | 100 | 18 80
23 | 101 | 18 55| 48 | 80 14 35
24 | 85 16 54| 49 | 105| 19 75
25 | 97 19 54|50 | 120 | 21 74

feature Vector, 1Q: Intelligent Quotient,

AM:Achievement motivation, SA: Social adjustment
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4. Results and analysis

In this section we place the results
obtained in our work and an analysis of these
results. The graphical representations of the
membership values (full or partial) of the
feature vectors in the final clusters obtained in
different executions have been given in figures
1 to 20. In table2 we have recorded the values
of different validity measures of FCM
algorithm when the membership values of the
feature vectors are initialized with different
features at different no. of clusters. The same
for GK algorithm have been recorded in
table3. The values of different validity
measures of FCM and GK algorithms at
different sizes of dataset have been given in
table4 and table5 respectively.

Table 2: The values of different validity measusFCM
algorithm with different features for initializintpe membership
values at different no. of clusters

Feature | C| Itn| PC CE Pl

1Q 416 0.90248| 0.14535 0.03908
AM 4 |8 0.93592 | 0.09099] 0.0682%2
SA 4 | 6 0.92743| 0.1033 0.0672p
1Q 3|5 0.92794 | 0.10711 | 0.07536
AM 3|6 0.92721 | 0.10793 | 0.07995
SA 3|5 0.92147 | 0.11724 | 0.07775
1Q 2| 4 0.86863| 0.18854 0.1170p
AM 212 0.85763 | 0.20356] 0.13537
SA 213 0.85774| 0.20341 0.1527[7

C: the no. of predefined clusters, Itn: the no.itefations to
reach the final clusters.

Table 3: The values of different validity measures GK
algorithm with different features for initializingpe membership
values at different no. of clusters

Feature| C| Itn| PC CE Pl

1Q 4 | 11| 0.85852| 0.20914 0.05578
AM 4 |15 0.83772| 0.23248 0.1154p
SA 415 0.77931] 0.32711 0.07821
1Q 3|6 0.79372| 0.30356| 0.14256
AM 3|7 0.85369 | 0.21217| 0.33906
SA 3|5 0.92444 | 0.10967 | 0.20339
1Q 26 0.82051| 0.26268 0.5174
AM 2 |4 0.73348| 0.38106 0.27783
SA 2| 4 0.80529| 0.28523 0.28288

C: the no. of predefined clusters, Itn: the no.itefations to
reach the final clusters.

Table 4: The values of different validity measucé=CM at
different sizes of dataset.

FCM ALGORITHM

N |C|lItn| PC CE Pl

50| 4| 6 0.90248 | 0.14535 0.03908
401 4| 5 0.91737| 0.12211 0.0387
30 4|5 0.92787 | 0.11276 0.03779

N: the size of the datasets, C: the no. of pregdfitiusters, Itn:
the no. of iterations to reach the final clusters.

Table 5: The values of different validity measudsGK at
different sizes of dataset

GK ALGORITHM

N

c

Itn

PC

CE

Pl

50

4

11

0.85852

0.20914

0.05578

40

No output as the norm inducing matrix

becomes singular

30

No output as the norm inducing matrix

becomes singular

N: the size of the datasets, C: the no. of pregdfitiusters, Itn:

the no. of iterations to reach the final clusters.
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Based on the values recorded in table 1, 2,
3, 4 and 5 we have tried to analyze the
performances of each algorithm separately
from all three aspects i.e. when the
membership values of the feature vectors are
initialized considering the values of the
features one at a time, when the no. of the
predefined clusters is changed and when the
size of the dataset is reduced. Next we have
tried to compare the performances of both the
algorithms for each of these three aspects. In
our analysis we have also considered the no. of
iterations required by both the algorithms to
reach the final clusters in different executions.
The graphical representations of all these
analysis have been given in figures 21 to 49.

A classification algorithm which exhibits
greater value of Partition Coefficient (PC) and
smaller values of Classification Entropy (CE)
and Partition Index (PI) is considered to have
better performance.

The no. of cluster wise performances of
FCM when the membership values of the
feature vectors are initialized with different
features have been shown in figures 21, 22 and
23. It is seen that when the no. of clusters is 4
FCM performs better with feature AM, when
the no. of clusters is 3 it performs better with
feature 1Q and when the no. of clusters is 2 it
performs better with feature 1Q. Again the
feature wise performances of FCM at different
no. of clusters have been shown in figures 24,
25 and 26. In these figures we see that with
feature 1Q FCM has better performance when
the no. of clusters is 3, with feature AM it has
better performance when the no. of clusters is
4, and with feature SA it has better
performance when the no. of clusters is 4.
Similar performances of GK algorithm based
on these two aspects have been shown in
figures 27 to 29 and figures 30 to 32
respectively. These reveal that when the no. of
clusters is 4 GK performs better with feature
IQ, when the no. of clusters is 3 it performs
better with feature SA and when the no. of
clusters is 2 it has better performance with
feature 1Q. Again with feature 1Q GK
performs better when the no. of clusters is 4,
with feature AM it performs better when the

no. of clusters is 3 and with feature SA it has
better performance when the no. of cluster is 3.

In figures 33 to 41 we provide the
comparison of different validity measures of
both the algorithms. It is seen that almost in all
the cases FCM has better performance except
in one where GK performs partially better (see
figure 38).

We have provided the graphical
representations of different validity measures
and the no. of iterations of FCM at different
sizes of datasets respectively in figures 48 and
49. It is seen that FCM performs better when
the size of the dataset is 30. Also it performs
faster when the dataset’s size is 40 and 30. On
the other hand the performance of GK
algorithm deteriorates significantly when the
size of the dataset becomes very small as the
respective norm inducing matrix becomes
singular (see tableb).

From iterations point of view GK
performs faster when initialized with feature
AM and the no. of clusters is 4 (figures 43 and
45). It also performs faster when initialized
with feature SA and the no. of clusters is 4
(figures 44 and 45). In rest of the cases FCM
performs faster.

4-|-+ +

3- LI I R *- -+ * - . -

ELET Nt ]

1 1 1 1 1 [ [ [ 1 1 1

8 5 18 15 28 25 3@ 35 48 45 50
FEATURE UECTOR 1D

+ Full Menber

- Partial Member

e—cut = @.20

Figure 1: Graphical representation of the membprshlues of
feature vectors produced by GK algorithm when atiied with
feature 1Q and no. of clusters is 4.
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Figure 2: Graphical representation of the membprshlues of Figure 5: Graphical representation of the membprshlues of
feature vectors produced by GK algorithm when atized with feature vectors produced by GK algorithm when afited with
feature AM and no. of clusters is 4. feature AM and no. of clusters is 3.

Figure 3: Graphical representation of the membprshlues of
feature vectors produced by GK algorithm when afited with
feature SA and no. of clusters is 4.

Figure 6: Graphical representation of the membprshlues of
feature vectors produced by GK algorithm when afized with
feature SA and no. of clusters is 3.

Figure 7: Graphical representation of the membprshlues of
Figure 4: Graphical representation of the membprshlues of feature vectors produced by GK algorithm when afited with
feature vectors produced by GK algorithm when afited with feature 1Q and no. of clusters is 2.
feature 1Q and no. of clusters is 3.
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Figure 8: Graphical representation of the membprshlues of
feature vectors produced by GK algorithm when afized with
feature AM and no. of clusters is 2

Figure 11: Graphical representation of the memliyensilues of
feature vectors produced by FCM algorithm wheniatiited
with feature AM and no. of clusters is 4

Figure 9: Graphical representation of the membprshlues of Figure 12: Graphical representation of the memliensiiues of
feature vectors produced by G_K algorithm when atized with feature vectors produced by FCM algorithm whenidltited
feature SA and no. of clusters is 2 with feature SA and no. of clusters is 4

Figure 10: Graphical representation of the memierstlues of Figure 13: Graphical representation of the membgngilues of
fe_ature vectors produced by FCM algorithm whenidlitied feature vectors produced by FCM algorithm wheniatited
with feature 1Q and no. of clusters is 4. with feature 1Q and no. of clusters is 3

8
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Figure 14: Graphical representation of the memliygnsiiues of ) . ) .

feature vectors produced by FCM algorithm whenidlied Figure 17: Graphical representation of the memiyereiues of

with feature AM and no. of clusters is 3 feature vectors produced by FCM algorithm wheniakited
with feature AM and no. of clusters is 2

Figure 15: Graphical representation of the memiiensiiues of Figure 18: Graphical representation of the memlignstiues of

feature vectors produced by FCM algorithm whenidtiited feature vectors produced by FCM algorithm wheniatiited

with feature SA and no. of clusters is 3 with feature SA and no. of clusters is 2

Figure 19: Graphical representation of the memliyenslues of
feature vectors produced by FCM algorithm wheniakited
with feature 1Q, no. of clusters is 4 and no. aftéee vectors is
40

Figure 16: Graphical representation of the memliyensilues of
feature vectors produced by FCM algorithm wheniakited
with feature 1Q and no. of clusters is 2
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a— |+ - . - . see-e - - 09 0,86863  0,85774

0,8
0,7
0,6
0,5
0,4
03
0,2
0,1

HEHACHD HDZ=n

a s 18 1s 28 25 38 0
FEATURE VECTOR ID
® Full Menber

PC CE Pl

- Partial Member

a—cut = @.28

Figure 23: Comparison of the values of differentidiey
Figure 20: Graphical representation of the memiensdues of measures of FCM algorithm with different featuresr f
feature vectors produced by FCM algorithm whenidlited initializing the membership values when the nfoclasters is
with feature 1Q, no. of clusters is 4 and no. aftéee vectors is 2.
30

09

0,8 -

09 4
08 -

.IQ 0,7 -
0,6 -

0,5 -+
B AM ol

03 -
mSA 14535 0,18854 = No. of cluster is 2
02 4 ; 711705

H No. of cluster is 4

0,4 -

H No. of cluster is 3

0,2 -

0,14535770,1033

0,03908 0,06726 01 A

PC CE Pl

PC CE Pl

Figure 21: Comparison of the values of differentidity

measures of FCM algorithm with different featuresr f Figure 24: Comparison of the values of differentidity
|n|t|al|z|ng the membership values when the nfoclosters is measures of FCM a|gorithm at different no. of dustwhen the
4. feature for initializing the membership values@s |

0,93592

0,92721 1
0,9
08
0,7
0,6
0,5
0,4
03
0,2
0,1

0,85763

H No. of cluster is 4

H No. of cluster is 3

= No. of cluster is 2

Figure 22: Comparison of the values of differentidiey Figure 25: Comparison of the values of differentidiey
measures of FCM algorithm with different featuresr f measures of FCM algorithm at different no. of adustwhen the
initializing the membership values when the rfoclosters is feature for initializing the membership values B A

3.
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1 092743 0,9
0,85774 0,82051  0,80529
09 - 08 -
08 - 07 -
07 - 06
06 - )
H No. of cluster is 4 05 - mIQ
05 -
04 | HNo. of cluster is 3 04 1 0,28288 AM
03 - 0,3 -
0'2 ] 0,15277 m No. of cluster is 2 02 - WSA
o1 | 0,0672 01 -
0 - 0 -
PC CE PI PC CE PI
Figure 26: Comparison of the values of differentidigy Figure 29: Comparison of the values of differentidigy
measures of FCM algorithm at different no. of austwhen the measures of GK algorithm with different featuresifatializing
feature for initializing the membership values & S the membership values when the no. of cluste2s is
! Tossss2 !
09 77031 09
08 - 08 -
07 07 A
06 1 =IQ 06 1 ® No. of cluster is 4
05 - 05 -
04 - 0,32711 HAM 04 - M No. of cluster is 3
03 1 HSA 03 m No. of cluster is 2
02 - .
0,05578/07821 0.2
01 A 01 -
0 A 0
pPC CE Pl PC CE Pl
Figure 27: Comparison of the values of differentidity Figure 30: Comparison of the values of differentidity
measures of GK algorithm with different featuresifutializing measures of GK algorithm at different no. of clustehen the
the membership values when the no. of clustets is feature for initializing the membership valuesQs I
1 0,92444 090 083772
09 79 08
08 07 |
07
06 06 1
miQ 05 - m No. of cluster is 4
05 0,38106
04 A 0,30356 =AM 04 1 7783 m No. of cluster is 3
0,3 0329 03 -
' WSA = No. of cluster is 2
02 02
01 01 -
0 0
PC CE Pl PC CE Pl
Figure 28: Comparison of the values of differentidity Figure 31: Comparison of the values of differentidity
measures of GK algorithm with different featuresifatializing measures of GK algorithm at different no. of clustehen the
the membership values when the no. of clusteds is feature for initializing the membership values A
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1 1 n,q7741
09 -
08 -
0,7 -
® No. of cluster is 4 0,6 -
m No. of cluster is 3 05 1 HFCM
032711 ) 5c,3 0,28288 04 -
= No. of cluster is 2 03 - mGKC
02 0,07821
’ 0,06726
01 -
0 -
PC CE PI
PC CE PI
Figure 32: Comparison of the values of differentidigy
measures of GK algorithm at different no. of clustehen the Figure 35: Comparison of the values of differentidity
feature for initializing the membership values & S measures of FCM and GK algorithm when the featune f
initializing the membership values is SA and theofcluster is
4
1 0,90248
09 -
08 - 1 092794
07 | 79372
06 - 08 -
05 + mFCM 0,6 -
04
03 - H GKC 04 - 0,30356. HFCM
] mGKC
02 0,03908 0,2 -+
01 A ;
o 0 -
PC CE Pl pC CE PI
Figure 33: Comparison of the values of differentidiey
measures of FCM and GK algorithm when the feature f Figure 36: Comparison of the values of differentidity
initializing the membership values is IQ and the ofocluster is measures of FCM and GK algorithm when the featue f
4 initializing the membership values is 1Q and the efocluster is
3
1 0,83592 1 0,92721
09 | 83772 09 | mm085360
08 A olg 4
0,7 - 0,7 4
06 - 06 -
05 - mFCM 05 - HFCM
04 04 - 0,33906
GKC 4
03 - 0,23248 " 03 091217 B GKC
0,2 - 0 0,2 A 0,107
] ' 0,079
01 A 0,06822 01 -
0 0 -
PC CE PI pPC CE PI
Figure 34: Comparison of the values of differentidiey
measures of FCM and GK algorithm when the feature f Figure 37: Comparison of the values of differentidity
initializing the membership values is AM and the nbcluster measures of FCM and GK algorithm when the featue f
is 4 initializing the membership values is AM and the nbcluster
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Figure 39: Comparison of the values of differentidigy Figure 42: Comparisons of the no. of iteration&6M and GK
measures of FCM and GK algorithm when the featune f algorithm at different no. of clusters when the tdea for
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Figure 40: Comparison of the values of differentidity Figure 43: Comparisons of the no. of iteration§6M and GK
measures of FCM and GK algorithm when the featue f algorithm at different no. of clusters when thetiea for
initializing the membership values is AM and the nbcluster initializing the membership values is AM
is 2
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Figure 49: Comparisons of the no. of iterations FEEM

Figure 46: Comparisons of the no. of iteration&6M and GK . . ;
algorithm at different sizes of dataset.
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values and when the no. of clusters is 3
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5. Conclusions

The results of our present work reveal that
the performances of both FCM and GK
algorithms depend on the initial membership
values of the feature vectors, the no. of the
predefined clusters and the size of the dataset.
These performances do not show any specific
rule for the first two aspects but for the third
one. The performance of FCM increases as the
size of the dataset reduces. On the other hand
GK algorithm does not perform well when the
size of the dataset is very small as the
respective norm inducing matrix becomes
singular. However the overall performance of
FCM is better as compared to that of GK on
the dataset we have used.
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