Hospital Pharmacology. 2022; 9(1):1118-1127 UDC: 618.19-006.6-071 doi:10.5937/hpimj2201118M # Association of Missed Cervical Cancer Screening with Sociodemographic Characteristics and Depression in Women Age 25-64 Years Dragana S. Milijašević^{1,2}, Sonja Lj. Šušnjević^{1,2}, Snežana N. Ukropina^{1,2}, Sonja I. Čanković^{1,2}, Tanja R. Tomašević^{1,2}, Sanja V. Harhaji^{1,2}, Marija B. Baroš Brkljača², Vesna P. Mijatović Jovanović^{1,2} ### **SUMMARY** **Introduction:** There is evidence that cancer screening and similar health interventions in patients with mental illnesses in some countries remain suboptimal. Considering the high prevalence of depression among women in Vojvodina, this study aimed to estimate the association of reduced utilization of cervical screening tests with sociodemographic variables and with depression. **Aim:** Considering the high prevalence of depression among women in Vojvodina, this study aimed to estimate the association of reduced utilization of cervical screening tests with sociodemographic variables and with depression. Material and Methods: The study was conducted as a cross-sectional study on 1,226 women age 25-64 years from the Province of Vojvodina, as a part of the National Health Survey. To determine the impact of the time when the last smearing test was done (as a dependent variable) on sociodemographic characteristics and depression binary logistic regression model (Enter) was implemented. Models were adjusted for age, type of settlement, education, material status (wealth index), employment status, having a gynecologist in state-owned and private practice, and depression. **Results:** Out of the total, 555 women (59.7%) missed the cervical smear test in the last 12 months. Women with a secondary school were more likely to miss the cervical smear test in the last 12 months (OR=1.62; 95% CI=1.13-2.33) as well as women age 50-64 years (OR=1.45; 95% CI=0.99-2.13). Women without gynecologist in either a state-owned or private health practice had 4.13 and 2.20 higher odds of not done cervical smear tests during the last 12 months. **Conclusion:** The results show that special attention should be paid by physicians to identifying disorders in women, which can lead to neglect of their health, and reduced health control. Keywords: Cervical Smears, Depression, Mental Health, Female Corresponding author: Associate Professor Vesna P. Mijatović Jovanović, MD, PhD Specialist in Social Medicine Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia E-mail: vesna.mijatovic-jovanovic@mf.uns.ac.rs ¹ Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia ² Institute of Public Health of Vojvodina, Novi Sad, Serbia ### INTRODUCTION Cancer is the second leading cause of death globally, accounting for an estimated 9.6 million deaths, or one in six deaths. In 2018 breast, colorectal, lung, cervical and thyroid cancer were the most common among women [1]. Although all these diseases belong to the group of preventable, the morbidity and mortality rates from these diseases are still high as a result of insufficient and low coverage of women with preventive examinations [2]. Pap smear screening of cervical cancer has been one of the most successful public health measures over the last decade [3]. It has a high potential of detection in early-stage cervical cancer and it can reduce the incidence rate and the mortality rate of cervical cancer by 79% and 70%, respectively [4]. Thus, the Pap smear screening exam is considered an effective and cheap tool for early detection and primary prevention of cervical malignancies [5,6]. A population-based study in Switzerland documented inequalities in cervical cancer screening. In particular, older, single women, those with low socioeconomic status (SES) or living in the rural area are less often screened for cervical cancer [7]. Unfortunately, screening participation is variable, even in health systems with adequate resources [8]. When cancer screening is considered, people with mental illnesses occasionally are overlooked. Major mental illnesses include medical conditions such as major depression, schizophrenia, bipolar disorder, obsessive-compulsive disorder, panic disorder, and post-traumatic stress disorder. There is evidence that women who suffer from depression are at risk, not only of poor mental health outcomes but physical health outcomes as well [9]. Previous literature has demonstrated the association between mental illnesses such as schizophrenia and bipolar disorder and cancer screening. There was a limited number of studies examining the association between anxiety and depression and cancer screening behavior [10]. Because of increasing evidence of disparities in disease-specific morbidity and mortality in mentally ill patients, there is a growing need to understand the impact of mental illness as a barrier to cancer screening [11-14]. ### **AIM** This study aimed to estimate the association of reduced utilization of cervical screening test with sociodemographic indicators and with depression in women in the Province of Vojvodina. ### MATERIAL AND METHODS This study is a secondary data analysis of a survey conducted 2013 as a cross-sectional study on a representative sample of the adult population of the Republic of Serbia. The Ethics Review Board of the Institute of Public Health of Serbia (Decision number 5996/1, of October 1, 2013) and the Ministry of Health of the Republic of Serbia issued the necessary approval for undertaking this study. A random sample of households and respondents was obtained by stratification and multi-sampling. Population data from the population census of the Republic of Serbia for 2011 with two variables (region and type of settlement) used for the initial strata. Same variables were used for stratification of the sample, so the samples were stratified in two dimensions. Vojvodina and 3 other statistical regions (Belgrade, Sumadija and Western Serbia, Southern and Eastern Serbia) were separated as the main stratum in the sample. Further, subdivisions were obtained by further division of the strata into the city and other areas. Subsequently, two-stage sampling was performed. In the first sample selection stage, the census circles were selected based on Probability Proportional Sampling (PPS) probability, and a total of 670 enumeration cycles were selected at this stage. In the second stage, 10 households and 3 spare households were selected from each list of households. Households were selected with the same probability of choice and without repetition, using the linear random sampling method and the simple Random Sample without Replacement (SRSWoR). The protocol of the survey, for Serbia, envisages the coverage of 10,089 households which were randomly selected, and 6,500 of them agreed to participate in the survey. The following categories of the population did not enter the survey: persons living in collective households and institutions (foster homes, social institutions, prisons, psychiatric institutions). All respondents were informed about the purpose of the study and agreed to participate. Three types of questionnaires were used: self-administered question- naire, face-to-face questionnaire, and house-hold questionnaire. For this study, we analyzed data on 1,226 women from the Autonomic Province of Vojvodina age 25-64 years. Data on cervical smear over time were obtained by answering the question When was the last time when you have done cytological smear of the cervix (during the last 12 months, 1-3 years ago, more than 3 years ago, more than 5 years ago, never). Then to examine how many women have done a cervical smear test in the last 12 months, a new variable was formed which included responses of women who did cervical smear test over time, and women were divided into 2 categories, those who did not and who did a cervical smear test in the last 12 months (Yes/No). Variables included sociodemographic characteristics: age, type of settlement, marital status, education, material status (Wealth Index), and employment status. Two more variables were included: the presence of chosen gynecologist in a state-owned practice and the presence of chosen gynecologist in private practice. These variables were dichotomized (yes or no). According to the Wealth Index (Demographic and Health Survey Wealth Index) respondents were classified into three socioeconomic groups or tercili: rich (richer and the richest class), middle and poor (poorest and poorer) [14]. Employment status was divided into three categories: employed, unemployed and inactive (retired, students, housewives, unable to work, and other inactive). To assess the presence of depressive disorders in the last 2 weeks the eight-item The Patient Health Questionnaire depression scale (PHQ-8) was used. A total score of 0 to 4 represents no significant symptoms of depressive; a score of 5 to 9 represents mild symptoms of depressive, and score \geq 10 represents depression [15]. ### Statistical analysis The data were analyzed by the method of descriptive and inferential statistics, where numerical features were presented by the arithmetic mean and standard deviation, while attributive features were expressed by frequencies and percentages. Numerical data were tested for normal distribution. Normal distribution was evaluated using graphical methods (Q-Q plot, histogram, boxplot), descriptive statistics (mean, standard deviation and median) and tests for normality (Kolmogorov- Smirnov). Sociodemographic characteristics, depression, and its association with missed cervical smear tests in the last 12 months were first examined using the chi-square test. Then, to determine the impact of last cervical smear test > 12 months, as a dependent variable, on sociodemographic characteristics and depression binary logistic regression model (Enter) were implemented. The variables, which were shown to be highly
significant after univariate analysis (age, type of settlement, education, wealth index, employment status, depression, having a gynecologist in state-owned or private practice), were further tested using binary logistic regression analysis. The evaluation of the validity of the logistic regression model implied an assessment of its goodnessof-fit measure and its accuracy. The Hosmer and Lemeshow as well as Nagelkerke R Square goodness-of-fit test was performed to determine how well the model fits the data. Multicollinearity among independent variables was tested by the test of Tolerance and Variance Inflation Factor (VIF) values. In the interpretation of the results, the Odds ratio was used together with the 95% Confidence Interval (CI). The probability, p < 0.05 was considered as a minimum level of significance. The analyses were done by using the statistical software package SPSS 21, including the weight factor ("weight on"), which was used for correction of disproportionate size of the sample and adjustment of the data collected. A weighting factor was excluded when the study population was described. ### **RESULTS** Out of the total number of women, 555 (59.7%) missed the cervical smear test in the last 12 months. However, 17 (1.4%) women did not answer the questions about cervical smear in the last 12 months, and the response rate was 98.6%. The sociodemographic characteristics of women age 25-64 years are shown in Table 1. The sample structure consisted of 1,226 women age 24-65 from the Autonomic Province of Vojvodina. The average age of the respondents was 46.8 and most of them belonging to the age category 50-64 years (47.1%). More than half of women (55.5%) had received a secondary education and 28.3% primary school or less. About three-fourth of women were married or live with a partner (72.3%) which is in line with the age structure. Less than half of Women 1,226 100.0 46.83±11.705 Age ($\bar{x}\pm SD$) Age (median(IQR)); Mean \pm SD 73.0 73.0 Age category 25-34 243 19.8 35-49 405 33.0 50-64 578 47.1 Marital status 886 72.3 married/living with apartner never married/never lived with a partner 10.3 126 widowed 118 9.6 divorced/separated 96 7.8 Type of settlement urban 736 60.0 rural 490 40.0 Education primary school 347 28.3 680 55.5 secondary school university degree 199 16.2 Wealth index 547 44.6 poor middle 270 22.0 rich 409 33.4 **Employment status** 430 35.1 employed unemployed 350 28.5 inactive 446 36.4 Depressive disorder 1,026 84.0 no depressive symptoms mild depressive symptoms 128 10.5 depression 68 5.6 Time when the last Pap smear test was done during the last 12 months 375 31.0 208 17.2 1-3 years ago 99 8.2 more than 3 years ago 248 20.5 more than 5 years ago 279 23.1 Chosen gynecologist in a state-owned practice yes 59.9 732 no 491 40.1 Chosen gynecologist in a private practice yes 187 15.3 1,036 84.7 no **Table 1.** Sociodemographic characteristics, depression, presence of gynecologist in state-owned and private practice and cervical smear test of women age 25-64 Table 2. Cervical cancer screening participation according to sociodemographic characteristics, presence of gynecologist and depression disorders in women | Momen Morariable Momen Morariable Momen M | Cervical smear tests in the last 12 months | | | | | | | | |--|--|-------|------|-----|------|-------|-------|-------------------------| | Nome | Variable | yes | | no | | total | | | | Name | | n | % | n | % | n | % | P | | 121 28.9 120 20.3 241 23.9 23.4 23.9 23.4 23.9 23.5 24.0 23.5 24.0 23.5 24.0 23.0 25.0 25.0 24.0 23.0 25. | Women | 375 | 40.3 | 555 | 59.7 | 930 | 100.0 | | | 171 | Age category | | | | | | | | | 50-64 126 30.1 275 46.5 401 39.7 total 1 1 1,010 100.0 1 Marital status married/living with apartner 308 73.7 444 75.0 752 74.5 74.5 74.5 74.5 8.6 8.0 8.7 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 72 7.1 70 100 100.0 100.01 | 25-34 | 121 | 28.9 | 120 | 20.3 | 241 | 23.9 | | | total Included the properties of propert | 35-49 | 171 | 40.9 | 197 | 33.3 | 368 | 36.4 | <0.001 | | Marital status married/living with apartner 308 73.7 444 75.0 752 74.5 74.5 74.5 74.5 75.0 75.2 74.5 74.1 72.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.5 74.1 74.0 86.6 86.5 86.6 86.8 87.5 84.4 35.1 86.1 86.2 87.5 81.1 86.2 87.0 81.0 86.2 87.0 81.0 86.2 87.0 81.4 81.0 81.0 | 50-64 | 126 | 30.1 | 275 | 46.5 | 401 | 39.7 | | | married/living with apartner 308 73.7 444 75.0 752 74.5 never married/never lived with a partner 45 10.8 54 9.1 99 9.8 widowed 30 7.2 42 7.1 72 7.1 divorced/separated 35 8.4 52 8.8 87 8.6 total 1.000 70.00 8.0 60.8 655 64.9 rural 122 29.3 232 39.2 354 35.1 total 124 29.7 26.3 41.7 195 19.3 total 14 24.5 58.6 36 61.2 20.001 willering system 10 25.1 119 </td <td>total</td> <td></td> <td></td> <td></td> <td></td> <td>1,010</td> <td>100.0</td> <td></td> | total | | | | | 1,010 | 100.0 | | | never married/never lived with a partner 45 10.8 54 9.1 99 9.8 widowed 30 7.2 42 7.1 72 7.1 divorced/separated 35 8.4 52 8.8 87 8.6 total 1,010 100.0 100.0 100.0 100.0 Type of settlement urban 295 70.7 360 60.8 655 64.9 rural 122 29.3 232 39.2 354 35.1 total 122 29.3 232 39.2 354 35.1 total 122 29.3 232 39.2 354 35.1 total 15.6 142 24.0 207 20.5 20.001 university degree 108 25.8 87 14.7 195 19.3 100.0 total 105 25.1 119 20.1 224 22.2 <0.001 | Marital status | | | | | | | | | widowed 30 7.2 42 7.1 72 7.1 divorced/separated 35 8.4 52 8.8 87 8.6 total 1,010 100.0 100.0 Type of settlement urban 295 70.7 360 60.8 655 64.9 0.001 total 122 29.3 232 39.2 354 35.1 0.001 Education 100 15.6 142 24.0 207 20.5 20.001 primary school 65 15.6 142 24.0 207 20.5 20.001 secondary school 245 58.6 363 61.3 608 60.2 <0.001 | married/living with apartner | 308 | 73.7 | 444 | 75.0 | 752 | 74.5 | | | widdwed 30 7.2 42 7.1 72 7.1 divorced/separated 35 8.4 52 8.8 87 8.6 total 1,010 100.0 100.0 Type of settlement urban 295 70.7 360 60.8 655 64.9 rural 122 29.3 232 39.2 354 35.1 total | never married/never lived with a partner | 45 | 10.8 | 54 | 9.1 | 99 | 9.8 | 0.054 | | total 295 70.7 360 60.8 655 64.9 rural 295 70.7 360 60.8 655 64.9 rural 122 29.3
232 39.2 354 35.1 total 160.00 16 | widowed | 30 | 7.2 | 42 | 7.1 | 72 | 7.1 | 0.854 | | Type of settlement urban 295 70.7 360 60.8 655 64.9 rural 122 29.3 232 39.2 354 35.1 total | divorced/separated | 35 | 8.4 | 52 | 8.8 | 87 | 8.6 | | | urban 295 70.7 360 60.8 655 64.9 0.001 rural 122 29.3 232 39.2 354 35.1 1 Education Education primary school 65 15.6 142 24.0 207 20.5 20.001 secondary school 245 58.6 363 61.3 608 60.2 <0.001 | total | | | | | 1,010 | 100.0 | | | rural 122 29.3 232 39.2 354 35.1 total 1,009 100.0 Education primary school 65 15.6 142 24.0 207 20.5 secondary school 245 58.6 363 61.3 608 60.2 <0.001 university degree 108 25.8 87 14.7 195 19.3 total 1,010 100.0 Wealth index poor 124 29.7 263 44.4 387 38.3 middle 105 25.1 119 20.1 224 22.2 <0.001 indepressive symptoms 208 49.8 210 35.5 399 39.5 total 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 inactive 99 23.7 203 34.3 302 29.9 total 209 209 209 209 209 209 209 209 209 209 | Type of settlement | | | | | | | | | rural 122 29.3 232 39.2 354 35.1 total 1,009 100.0 Education | urban | 295 | 70.7 | 360 | 60.8 | 655 | 64.9 | 0.004 | | Education primary school 65 15.6 142 24.0 207 20.5 secondary school 245 58.6 363 61.3 608 60.2 <0.001 | rural | 122 | 29.3 | 232 | 39.2 | 354 | 35.1 | 0.001 | | primary school 65 15.6 142 24.0 207 20.5 secondary school 245 58.6 363 61.3 608 60.2 <0.001 university degree 108 25.8 87 14.7 195 19.3 total 1,010 100.0 | total | | | | | 1,009 | 100.0 | | | secondary school 245 58.6 363 61.3 608 60.2 <0.001 university degree 108 25.8 87 14.7 195 19.3 total 1,010 100.0 Wealth index poor 124 29.7 263 44.4 387 38.3 middle 105 25.1 119 20.1 224 22.2 <0.001 rich 189 45.2 210 35.5 399 39.5 total Employment status employed 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 inactive 99 23.7 203 34.3 302 29.9 total 1,010 100.0 Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 <td>Education</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Education | | | | | | | | | university degree 108 25.8 87 14.7 195 19.3 total 1,010 100.0 Wealth index poor 124 29.7 263 44.4 387 38.3 middle 105 25.1 119 20.1 224 22.2 <0.001 rich 189 45.2 210 35.5 399 39.5 total Lemployment status employed 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 inactive 99 23.7 203 34.3 302 29.9 total Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 | primary school | 65 | 15.6 | 142 | 24.0 | 207 | 20.5 | | | total 1,010 100.0 Wealth index poor 124 29.7 263 44.4 387 38.3 middle 105 25.1 119 20.1 224 22.2 <0.001 | secondary school | 245 | 58.6 | 363 | 61.3 | 608 | 60.2 | <0.001 | | Wealth index poor 124 29.7 263 44.4 387 38.3 middle 105 25.1 119 20.1 224 22.2 <0.001 | university degree | 108 | 25.8 | 87 | 14.7 | 195 | 19.3 | | | poor 124 29.7 263 44.4 387 38.3 middle 105 25.1 119 20.1 224 22.2 <0.001 rich 189 45.2 210 35.5 399 39.5 total India 1,010 100.0 India | total | | | | | 1,010 | 100.0 | | | middle 105 25.1 119 20.1 224 22.2 <0.001 rich 189 45.2 210 35.5 399 39.5 total 1,010 100.0 1 | Wealth index | | | | | | | | | rich 189 45.2 210 35.5 399 39.5 total 1,010 100.0 Employment status employed 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 inactive 99 23.7 203 34.3 302 29.9 total 1,010 100.0 Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | poor | 124 | 29.7 | 263 | 44.4 | 387 | 38.3 | | | total 1,010 100.0 Employment status Employed 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 inactive 99 23.7 203 34.3 302 29.9 total 1,010 100.0 Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 5.3 total 1,007 100.0 100.0 Choesen gynecologist in a state-owned practice 20 248 41.9 326 32.3 40.001 colspan="8">Choesen gynecologist in a state-owned practice 340 81.3 344 58.1 684 67.7 67.001 modernment 340 <td>middle</td> <td>105</td> <td>25.1</td> <td>119</td> <td>20.1</td> <td>224</td> <td>22.2</td> <td><0.001</td> | middle | 105 | 25.1 | 119 | 20.1 | 224 | 22.2 | <0.001 | | Employment status employed 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 | rich | 189 | 45.2 | 210 | 35.5 | 399 | 39.5 | | | employed 208 49.8 210 35.5 418 41.4 unemployed 111 26.6 179 30.2 290 28.7 <0.001 | total | | | | | 1,010 | 100.0 | | | unemployed 111 26.6 179 30.2 290 28.7 <0.001 inactive 99 23.7 203 34.3 302 29.9 29.9 total 1,010 100.0 Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 5.3 total Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 6.001 no 78 18.7 248 41.9 326 32.3 | Employment status | | | | | | | | | inactive 99 23.7 203 34.3 302 29.9 total 1,010 100.0 Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | employed | 208 | 49.8 | 210 | 35.5 | 418 | 41.4 | | | total 1,010 100.0 Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | unemployed | 111 | 26.6 | 179 | 30.2 | 290 | 28.7 | <0.001 | | Depressive disorder no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | inactive | 99 | 23.7 | 203 | 34.3 | 302 | 29.9 | | | no depressive symptoms 373 89.4 486 82.4 859 85.3 mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | total | | | | | 1,010 | 100.0 | | | mild depressive symptoms 27 6.5 68 11.5 95 9.4 0.007 depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | Depressive disorder | | | | | | | | | depression 17 4.1 36 6.1 53 5.3 total 1,007 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | no depressive symptoms | 373 | 89.4 | 486 | 82.4 | 859 | 85.3 | | | total 1,007 100.0 Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | mild depressive symptoms | 27 | 6.5 | 68 | 11.5 | 95 | 9.4 | 0.007 | | Choesen gynecologist in a state-owned practice yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 | depression | 17 | 4.1 | 36 | 6.1 | 53 | 5.3 | | | yes 340 81.3 344 58.1 684 67.7 no 78 18.7 248 41.9 326 32.3 <0.001 | total | | | | | 1,007 | 100.0 | | | no 78 18.7 248 41.9 326 32.3 <0.001 | Choesen gynecologist in a state-owned pra | ctice | | | | | | | | no 78 18.7
248 41.9 326 32.3 | yes | 340 | 81.3 | 344 | 58.1 | 684 | 67.7 | -0.004 | | total 1 010 100 0 | no | 78 | 18.7 | 248 | 41.9 | 326 | 32.3 | <u.uu1< td=""></u.uu1<> | | 1,010 100,0 | total | | | | | 1,010 | 100.0 | | | Chosen gynecologist in private practice | | | | | | | | |---|-----|------|-----|------|-------|-------|-------| | yes | 104 | 24.9 | 96 | 16.2 | 200 | 19.8 | 0.001 | | no | 314 | 75.1 | 496 | 83.8 | 810 | 80.2 | 0.001 | | total | | | | | 1,010 | 100.0 | | women were poor (44.6%), 35.1% of women were employed and 60.0% lived in a city. Most women have chosen gynecologist in a state-owned practice (59.9%), while 15.3% of women have chosen gynecologist in private practice. More than one-fifth of women never done a cervical smear test (23.1%) (Table 1). The results of the chi-square test indicate that about half of the woman (46.5%) who have not done cervical smear tests in the last 12 months were among women age 50-64 years (p<0.001) and 39.2% of them were from a rural settlement (p=0.001). In the last 12 months, 11.5% of women who have not done the cervical smear test in the last 12 months had mild depressive symptoms and 6.1% had depression (p=0.007). About 61% of the woman who have not done cervical smear test in a last 12 months was with secondary education (p<0.001), 35.5% were employed (p<0.001) and 44.4% ac- cording to the Wealth index belong to the poor category (p<0.001) which is significantly more in comparison with women who did Pap test in a last 12 months. Significantly more women who do not have a chosen gynecologist in a state-owned (41.9%; p<0.001) and private practice (83.8%; p=0.001) didn't have a cervical smear test in the last 12 months (Table 2). The binary logistic regression analysis showed the consistency of the association of age, lower education, chosen gynecologist in a state owned or private practice among women who had no cervical smear test done in the last 12 months (Table 3). Women with a secondary school were more likely to miss the cervical smear test in the last 12 months (OR=1.62; 95% CI=1.13-2.33) compared to women with a high education level. Women age 50-64 years were more likely to miss cervical smear tests in the last 12 months com- | Parameters for last cervical smear
tests > 12 months predictors* | В | S.E. | Wald | df | Sig. | Exp (B) | 95% C.I. for
EXP (B) | | |---|-------|------|--------|----|------|---------|-------------------------|-------| | | | | | | | | Lower | Upper | | Age ^b | .372 | .162 | 5.287 | 1 | .021 | 1.451 | 1.056 | 1.992 | | Education ^c (secondary) | .483 | .185 | 6.830 | 1 | .009 | 1.621 | 1.128 | 2.329 | | Choesen gynecologist in a state-owned practice ^d | 1.417 | .178 | 63.546 | 1 | .000 | 4.126 | 2.912 | 5.846 | | Chosen gynecologist in private practice ^e | .790 | .198 | 15.870 | 1 | .000 | 2.203 | 1.493 | 3.248 | pared to those age 25-49 years (OR=1.45; 95% CI=1.06-1.99). Women without gynecologist in a state-owned or private health practice had higher odds to miss cervical smear tests in the last 12 months compared to women who have gynecologist (OR=4.13; 95% CI=2.91-5.85 and OR=2.20; 95% CI=1.49-3.25) (Table 3). ### DISCUSSION Our study showed that 59.7% of women age 25-64 did not have a cervical smear test in the last 12 months. Results of the 2006 National Health Survey in Serbia showed that the percentage of women who did not have the cervical smear test in the last three years was 65.1%, which is higher than results from the 2013 National Health Survey when 42.9% of women did not have a cervical smear test in the last three year [16, 17]. According to the data of the International Fund for Cancer Research (American Institute for Cancer Research), in 2018, half a million newly diagnosed women with cervical cancer were registered in the world, and the countries with the highest percentage of new cases are Swaziland, Malawi, and Zambia [18]. In Europe, Latvia (52.5%), Bosnia and Herzegovina (46.4%), Estonia (42.4%), as well as Serbia, with the highest age-standardized incidence rate of cervical cancer in the category of women age 25-64. The Republic of Serbia is on the high sixth position with an age-standardized incidence rate of 38.8 per 100,000 women [19]. Such high incidence rates are unacceptable, given that cervical cancer can be prevent- **Table 3.** Association of cervical cancer screening test in the last 12 months with sociodemographic characteristics, presence of gynecologist and depression disorders - * Adjusted for type of settlement, employment status, wealth index, depression - S.E. standard error - C.I. confidence interval - **B** regression coefficient - ^b Reference value for youngest - ^c Reference value for highest level of education - d Reference value for having choesen gynecologist in a stateowned practice - Reference value for having chosen gynecologist in private practice ed by applying preventive measures. If a woman gets sick, she can be successfully treated if the disease is detected in time [20]. Therefore, there is no justification for the fact that over seven hundred women die from this disease in the world every day. Numerous studies in this area have shown the same results, that women of higher socioeconomic status measured by education, financial status, and economic status have achieved greater coverage with this preventive examination [21-24]. This analysis showed that with the decline in material status, the number of women who did not have the cervical smear test in the last 12 months increased, and 44.4% of poor women missed this test. Numerous studies have confirmed an association between low-income and cervical cancer screening [9, 11] and especially important is finding that even in countries that have good health care coverage, the cervical screening rate is suboptimal among low-income women at greatest risk. In addition, follow up among women with inadequate or abnormal test results is also often poor [25]. Our results show that women with a secondary education, were more likely to miss a cervical smear test in the last 12 months compared to women with a high level of education. Study conducted on women from Latin America also confirmed the influence of education on cervical cancer screening [26]. Olesen et al. also reported that non participation in cervical screening is associated with lower level of education [27]. Both studies also confirmed the association between depressive disorders and cervical cancer screening participation [26, 27]. The mental health of women is of special importance, not only because of the vulnerability of women but also because of the fact that women take care of the health of their children, parents, and other family members [2]. Depression is the most common mental health disorder, and according to the WHO, about 300 million people on the planet suffer from this disorder, most of whom are women [28]. There is evidence that women who suffer from depression are at risk, for poor physical health outcomes, lower rate of cervical screening, as well as, reduced health control generally. Drus and Fang in their studies have found lower rates of screening among women with severe mental illness, particularly among older women, those with a history of substance use, and those living with schizophrenia or other psychotic disorders [29, 30]. Fear of an event, such as invasive cancer, that would not be possible to cope with either financially or emotionally and fear of death, those barriers were found in studies in Mexico, Ecuador, Peru [26]. The results which describe that depressive symptoms were significantly associated with lower odds of being screened for cervical cancer are also supported by findings of Zhang et al. [10]. Our results show that women age 50-64 years have higher odds of missed cervical smear tests than women age 25-49 years, but there was no significant association with depressive disorders. In line with our results are the results of Vigods study where middleage and older women missed Pap test [9]. The same results are shown in the study of Kaida et al. where middle-age women (age 40-49 and 50-59 years) were significantly less likely to report a recent Pap test compared with their counterparts [31]. This may be of particular importance because the development of cervical cancer is slow and majority of cases present in women over the age of 35, indicating the need for increased vigilance in that age group [9]. Many authors believe that women over the age of 50 missd cervical screening becauseother cancer screening measures (including mammography and colonoscopy), menopausal counseling, and other chronic disease prevention may take priority [26]. Other factors that have consistently been associated with poor coverage with screening include lack of a regular source of healthcare or a regular physician [30]. Having a primary care provider generally is associated with better screening in all populations [30]. Our results showed that women who didn't have a chosen gynecologist in state-owned as well as in private practice had greater odds of missed cervical smear test in the last 12 months compared to those who had a selected health providers. The barriers to screening identified by consumers and health care providers showed similarities with those identified in other disadvantaged groups, including difficulties with transport and access, embarrassment, adverse experiences, lack of reminders, and primay health care providers [32]. Having a regular primary care provider and their engagement in patient care may play crucial role in cancer screening for this population [11]. ### CONCLUSION This study showed the association of missed cervical smear tests in the last 12 months with sociodemographic determinants, depression and healthcare utilization. In most countries, health policies have not put cervical cancer as a priority and there is
insufficient coverage of the target age group. The results show that special attention should be paid by physicians to identifying mental health disorders in women which can lead to neglect of their health and reduced health control. Cooperation between the public and private sectors as well as their cooperation with volunteer groups and NGOs should be strengthened, and synergies of material and human resources should be increased to improve coverage and monitoring. ### LIMITATIONS OF THE STUDY Our study was carried out as a cross-sectional study which limits us for examining behaviors over time as well as the ability to determine the cause-effect relations. Second, our data on health care utilization and screening are self-reported and could be a potential source of bias. Despite this limitation, using data from the National Health Survey is a special advantage because the results are based on data from a nationally representative population sample, which provides reliable statistical analysis. The internal and external validity of the study was ensured by random sampling and the use of a standardized PHQ-8 questionnaire, which also enabled the generalization of results. ### **ACKNOWLEDGEMENT** This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (project No 175025). ### **CONFLICTS OF INTEREST** All authors declare no conflict of interest. ### REFERENCES - 1. WHO. Cancer. Available at:https://www.who.int/health-topics/cancer#tab=tab_1(12 June 2020, date last accessed). - 2. Institute of Public Health of Serbia "Dr Milan Jovanović Batut". Health of the population of Ser- - bia analytical study 1997-2007. Belgrade: Institute of Public Health of Serbia "Dr Milan Jovanovic Batut", 2008. - 3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. - 4. Patel P, Hari AY, Bernstein M, Farfel A, Raman K. Assessing knowledge of cervical cancer among health care students in Mwanza, Tanzania. Obstet Gynecol 2018;131:65. - 5. Teame H, Addissie A, Ayele W, Hirpa S, Gebremariam A, Gebreheat G, et al. Factors associated with cervical precancerous lesions among women screened for cervical cancer in Addis Ababa, Ethiopia: A case control study. PLoS One 2018;13(1): e0191506. - 6. Babazadeh T. Predictors of Pap Smear Screening Behavior Among Rural Women in Tabriz, Iran: An Application of Health Belief Model. Int J Cancer Manag 2019; 12(5):e87246. - 7. Burton-Jeangros C, et al. Cervical cancer screening in Switzerland: cross-sectional trends (1992-2012) in social inequalities. Eur J Public Health 2016;27(1):167-73. - 8. Ludman EJ, et al. Breast and Cervical Cancer Screening: Specific Effects of Depression and Obesity. Am J Prev Med 2010;38(3):303-10. - 9. Vigod NS, et al. Depressive symptoms as a determinant of breast and cervical cancer screening in women: a population-based study in Ontario, Canada. Arch Womens Ment Health 2011;14:159-68. - 10. Zhang X, et al. Anxiety and depressive symptoms and missing breast cancer and cervical screening: results from Brazos valley community health survey. Psychology, Health & Medicine 2019;402-9. Published online. DOI: 10.1080/13548506.2019.1668031. - 11. Aggarwal A, Pandurangi A, Smith W. Disparities in Breast and Cervical Cancer Screening in Women with Mental Illness. A Systematic Literature Review. Am J Prev Med 2013;44(4):392-8. - 12. Felker B, Yazell J, Short D. Mortality and medical comorbidity among psychiatric patients: a review. Psychiatr Serv 1996;47:1356-63. - 13. Wassertheil-Smoller S, et al. Depression and cardiovascular sequelae in postmenopausal women. Arch Intern Med 2004;164:289-98. - 14. Katon W, Rutter C, Simon G, et al. The association of comorbid depression with mortality in patients with type 2 diabetes. Diabetes Care 2005;28:2668-72. - 15. Rutstein SO, Johnson K. The DHS Wealth Index. DHS Comparative Reports No. 6. Calverton, Mary- - land, USA: ORC Macro, 2004. - 16. KroenkeK, Strine TW, Spitzer RL, Williams JB, Berry JT, Mokdad AH. The PHQ-8 as a measure of current depression in the general population. J Affect Disord 2009;114(1-3):163-73. - 17. Ministry of Health of the Republic of Serbia. Serbian Population Health Survey, 2013 Protocol. Belgrade: Ministry of Health of the Republic of Serbia, 2013. - 18. Ministry of Health of the Republic of Serbia. Serbian Population Health Survey, 2006 Finnal report. Belgrade: Ministry of Health of the Republic of Serbia, 2007. - 19. Cervical cancer statistics World Cancer Research Fund. Cervical cancer statistics. Available at: https://www.wcrf.org/dietandcancer/cancer-trends/cervical-cancer-statistics(12 April 2020, date last accessed). - 20. Globocan. Cancer today. Available at:https:// gco.iarc.fr/today/online-analysis-multibars?v=2018&mode=population&mode_populat ion=countries&population=900&populations=90 8&key=asr&sex=2&cancer=23&type=0&statisti c=5&prevalence=0&population_group=5&ages_ group%5B%5D=5&ages_group%5B%5D=12&nb_ items=10&group_cancer=0&include_ nmsc=1&include_nmsc_other=1&type_multiple=%2 57B%2522inc%2522%253Atrue%252C%2522mort%252 2%253Afalse%252C%2522prev%2522%253Afalse%257 D&orientation=horizontal&type_sort=0&type_nb_it ems=%257B%2522top%2522%253Atrue%252C%2522b ottom%2522%253Afalse%257D&population_group_li st=8,40,112,56,70,100,191,203,208,233,246,250, 276,300,348,352,372,380,428,440,442,470,499,5 78,616,620,498,642,643,688,703,705,724,752,75 6.528.807.804.826&population group globocan id=908#collapse-group-0-4(12 April 2020, date last - 21. Vukicevic D, et al. Descriptive-epidemiological characteristics of cervical cancer. Medical practice 2015;44(1):67-72. - 22. Jennings-Dozier K, et al. Sociodemographic Predictors of Adherence to Annual Cervical Cancer Screening in Minority Women. Cancer Nursing 2000;23(5):350-6. - 23. Raychaudhuri S, Mandal S. Socio-Demographic and Behavioural Risk Factors for Cervical Cancer and Knowledge, Attitude and Practice in Rural and Urban Areas of North Bengal, India. Asian Pacific J Cancer Prev 2012;1093-96. - 24. Antić Lj, et al. Do women in rural areas of Serbia rarely apply preventive measures against cervical cancer? Vojnosanit Pregl 2014;71(3):277-84. - 25. Elit L, Krzyzanowska M, Saskin R, Barbera L, Razzaq A, Lofters A, Yeritsyan N and Bierman A. Sociodemographic factors associated with cervical cancer screening and follow-up of abnormal results. Canadian Family Physician 2012;58(1):22-31. - 26. Agurto I, Bishop A, Sanchez G, Betancourt Z, Robles S. Perceived barriers and benefits to cervical cancer screening in Latin America. Preventive Medicine 2004;39(1):91-8. - 27. Olesen SC, Butterworth P, Jacomb P et al. Personal factors influence use of cervical cancer screening services: epidemiological survey and linked administrative data address the limitations of previous research. BMC Health Serv Res 2012;12(1)34. - 28. WHO. Mental health: strengthening our response. Available at: https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response(12 April 2020, date last accessed). - 29. Druss BG, von Esenwein SA, Compton MT, et al. A randomized trial of medical care management for community mental health settings: the Primary Care Access, Referral, and Evaluation (PCARE) study. American Journal of Psychiatry 2010;167:151-9. - 30. Kaida A, et al. Recent Pap Tests among Canadian Women: Is Depression a Barrier to Cervical Cancer Screening? Journal of women's health 2008;17(7):1.175-81. - 31. Fang CY, Ma GX, Tan Y. Overcoming barriers to cervical cancer screening among Asian American women. North American Journal of Medicine and Science 2011;4:77-83. - 32. Owen C, Jessie D, De Vries Robbe M. Barriers to cancer screening amongst women with mental health problems. Health Care Women Int 2002;23:561-6. ## Povezanost propuštanja skrininga na karcinom grlića materice sa sociodemografskim karakteristikama i depresijom kod žena starosti 25-64 godina Dragana S. Milijašević^{1,2}, Sonja Lj Šušnjević^{1,2}, Snežana N. Ukropina^{1,2}, Sonja I. Čanković^{1,2}, Tanja R. Tomašević^{1,2}, Sanja V. Harhaji^{1,2}, Marija B. Baroš Brkljača², Vesna P. Mijatović Jovanović^{1,2} ## KRATAK SADRŽAJ **Uvod:** Postoje dokazi da skrining nakarcinome, kao i drugi zdravstveni postupci kod pacijenata sa mentalnim bolestima u nekim zemljama ostaju neoptimalni. Cilj: Uzimajući u obzir visoku raširenost depresije među ženama u Vojvodini, ova studija je imala za cilj da proceni povezanost smanjene upotrebe skriningana karcinom grlića materice sa sociodemografskim pokazateljima i sa depresijom. Materijal i metode: Studija je sprovedena kao studija preseka na 1.226 žena starosti 25-64 godine iz Autonomne Pokrajine Vojvodine, kao deo Nacionalne studije. Da bi se utvrdilo uticaj vremena kada je urađen poslednji cervikalni test kao zavisne varijable na sociodemografske karakteristike i depresiju, primenjen je model binarne logističke regresije po metodi Enter. Modeli su prilagođeni starosti, vrsti naselja, obrazovanju, materijalnom statusu (indeksu blagostanja), radnom statusu, posedovanju ginekologa u državnoj i privatnoj praksi i depresiji. Rezultati: Od ukupnog broja, 555 žena (59,7%) je propustilo bris grlića materice u poslednjih 12 meseci. Žene srednjeg nivoa obrazovanja su češće propustile bris grlića materice u poslednjih 12 meseci (OR=1,62; 95% CI=1,13-2,33), kao i žene starosti 50-64 godina (OR=1,45; 95% CI=1,06-1,99). Žene bez ginekologa u državnoj i privatnoj zdravstvenoj praksi imale su 4,13 i 2,20 veću šansu da ne urade bris grlića materice u poslednjih 12 meseci. Zaključak: Rezultati ukazuju da lekari treba da posvete posebnu pažnju identifikovanju problema kod žena koji mogu dovesti do zanemarivanja njihovog zdravlja i smanjene zdravstvene kontrole. Ključne reči: cervikalni bris, depresija, mentalno zdravlje, žene Received: December 01, 2021
Accepted: February 01, 2022 ¹ Medicinski fakultet Novi Sad, Univerzitet u Novom Sadu, Novi Sad, Srbija ² Institut za javno zdravlje Vojvodine, Novi Sad, Srbija