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It was studied a photonic linear two-dimensional plus lattice dressed by the artifi-
cial flux and explored the influence of the artificial gauge field on the energy band 
spectrum. The Aharonov-Bohm effect has caused the appearance of flat zones 
and for certain values of the flux, the lattice spectrum has been described by two 
momentum independent, fully degenerated flatbands and three dispersive bands. 
Three different types of fundamental non-orthogonal compactons have been ob-
tained. The findings presented in this study could be tested in practice and they 
may be used for probing different artificial flatband systems, e. g. ultracold atoms 
in optical lattices, polariton condensates etc.

Keywords: photonic lattice, flat-band 
spectrum, compacton

Introduction 

Flatband (FB) photonic systems have been in the 
spotlight of researchers since they represent an ad-
vantageous testbed for studying transport and localiza-
tion properties at the linear level [1]. Although the FB 
systems were originally explored in condensed matter 
physics and afterwards realized on a variety of plat-
forms (e.g. cold atom systems [2], quantum dot lattices 
[3]), photonic lattices have been established as the 
ideal ones, since working with them is very comfortable 

- they are easy to manipulate with and it is possible to di-
rectly observe the wave dynamics. FB photonic lattices 
represent arrays of coupled waveguides whose band 
structure has at least one entirely flat (i.e. dispersion-
less) band [4]. Due to their geometry, it is possible to 
design artificial gauge field effects which are equivalent 
to the magnetic field flux, i.e. the spin-orbit interaction 
in atomic systems [5].

One of the key features of FBs is the absence of dis-
persion, with fully degenerated energies, allowing the 
formation of a set of fully isolated localized structures 

– compactons, that are highly robust to environmental 
noise. These compact localized modes (CLMs) are 
eigenstates of FBs [6]. Transport of energy and mode 
propagation in these FB systems can be developed on 
the basis of the FB eigenmode, which is compact but 
not compulsorily orthogonal.

Here, we study a two-dimensional (2D) plus-like lat-
tice [7], dressed by the artificial flux, which could be cre-
ated by experimental techniques based on the coupled-
spring resonators [4] and wave-guide networks [8]. This 

paper is a continuation of the previous study where this 
lattice geometry was proposed for the first time [7]. It 
was found that the energy spectrum of the correspond-
ing linear lattice consisted of one fully degenerate FB 
placed between two inner and two external dispersive 
bands (DBs). The properties of linear and nonlinear 
compact modes were explored and it was shown that 
CLMs persist when nonlinearity is present in the system 
but they became unstable. Now, we go a step further 
and investigate the influence of the artificial gauge field 
on the linear, uniform plus-like lattice, by taking that a 
uniform flux threads each diamond plaquette. Since the 
flux-dressed lattice can host the Aharonov-Bohm (AB) 
effect which causes the appearance of flat zones in the 
corresponding energy spectrum [9], we expect the ap-
pearance of new FBs in this case. We find the energy 
band spectrum and corresponding CLMs.

The paper is organized in the following manner: After 
the Introduction, we present the mathematical model, 
the influence of the artificial flux on the energy spec-
trum of the lattice and finally the existence of CLMs is 
confirmed. A short summary is presented in Section V. 

Model
The geometry of the uniform plus lattice under con-

sideration is schematically presented in Fig. 1. The unit 
cell, marked with a dotted line, consists of five sites (a, 
b, c, d, e). Each of the four peripheral sites is linearly 
coupled with the central site as well as with surround-
ing elements of adjacent unit cells (coupling parameter t). 
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The gauge field is introduced and it generates the artificial 
magnetic field inside the square plaquette (Fig. 1). The flux 
of this artificial field changes the coupling between sites 
of the diamond plaquette to                  , where t is the 
hopping parameter and ϕ is the artificial flux.

Figure 1. Schematic of 2D plus-like lattice with artificial flux. 
The unit cell is encircled by a dotted line.

The light propagation through the linear flux-dressed 
plus lattice in the tight binding approximation can be de-
scribed by a set of 5MN coupled differential equations:

where z is the normalized propagation axis, am,n, bm,n, 
cm,n, dm,n, and em,n are localized mode’s amplitudes locat-
ed at the a, b, c, d and e sites of the (m, n) unit cell (m=1, 
...M; n=1,...N). Here, M and N denote the total number 
of unit cells in the x and y direction, respectively. The 
strength of the hopping parameter is scaled to t=1. 

The (linear) Hamiltonian of the flux-dressed plus lat-
tice in the reciprocal lattice space can be expressed in a 
matrix form:

where                  is a 2D Bloch vector. When the eigen-
value problem of linear Hamiltonian is solved, we obtain 
the corresponding eigenvalue bands             , β being 
the corresponding eigenenergy which plays the role 
of propagation constant.

The energy spectrum
As was already mentioned in the Introduction, FB 

photonic lattices have at least one entirely FB in the 
photonic band structure. A FB is an entirely disper-

sionless energy band that spans the entire Brillouin 
spectrum [10]. Corresponding eigenstates are 
known as CLMs and they are constructed as super-
position of degenerate Bloch waves. The amplitudes 
of eigenstates vanish except at a limited number of 
unit cells. In this way, the waves stay localized and 
they may be robust against the eventual disorder 
of the system [11]. FBs can be classified into three 
types: ‘symmetry-protected’ FBs, ‘accidental’ FBs 
and ‘topologically protected’ FBs [4]. The last type 
is robust under the perturbation of coupling param-
eters, whereas the ‘accidental’ FBs are formed by 
fine-tuning system parameters. 

Another classification of FBs is in use and it is 
related to the size of the CLM, U, which represents 
the number of unit cells occupied by the CLM. Now, 
symmetry-protected FBs are replaced with U=1 FBs, 
with CLM occupying only one unit cell, hence cre-
ating an orthogonal set [12]. Accidental FB corre-
sponds to U ≥ 2, where CLM extends beyond one 
unit cell and creates a non-orthogonal set. Topologi-
cally protected FBs can be found in systems with 
a bipartite symmetry (e. g. Lieb lattice with two 
sublattices [4]). For the sake of completeness, we 
should add that FB can be classified as singular 
and nonsingular. The FB is considered singular if 
the singularity is present in the FB’s Bloch functions, 
otherwise, the FB is nonsingular. The singularity is 
generated by the band crossing with another DB. 

As it was shown in the preceding paper [7], in the 
absence of the flux, the energy spectrum of the uni-
form lattice has one fully degenerate FB that is cen-
tred at β=0 and placed between two inner and two 
outer, mirror symmetric DBs (Fig. 2a). The upper DB 
is connected to the FB at the centre of the Brillouin 
zone (kx = ky = 0). The lower DB is connected to the 
FB as well but at the borders of the Brillouin zone 
(|kx| = |ky| = π). Now, by introducing the flux, Φ, and 
by changing its value from [0, 8π], the energy spec-
trum is being affected, as it is illustrated in Figs. 2b, 
c and d. Due to the AB effect, flat zones appear in 
the corresponding energy spectrum, hence for ϕ=π, 
the lattice spectrum is described by two momentum 
independent, fully degenerated FBs (corresponding 
to  ), and three DBs. The upper FB is connected with 
two DBs at one point (|kx|=-π, |ky|=-π), whereas the 
lower FB is connected with two DBs at the centre of 
the Brillouin zone (kx = ky = 0). The same structure of 
bands is found for ϕ=3π (2 FBs and 3 DBs) except 
for the different geometry of DBs, as it can be seen 
from Figs. 2c and 2d. For ф=2π, the five eigenener-
gies of linear Hamiltonian form one FB at β=0 and 
four DBs, but in this case, the whole spectrum is 
symmetric with respect to FB, Fig.2b. Here, the only 
FB is also connected with 2 DBs, with both of them 
at four points: (|kx| =0, |ky| =π) and (|kx| =π, |ky| =0) 
of the Brillouin zone.
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Figure 2. Energy bands of the linear plus lattice for different 
values of flux: a) Φ=0, b) Φ=π, c) Φ=2π and d) Φ=3π

Compact localized modes
In the case of the uniform flux-free plus lattice, 

the FB eigenbase is spanned by a set of corre-
sponding compact, nonorthogonal, localized eigen-
states -fundamental compactons [7]. They are a 
consequence of the destructive interference effect 
which is induced geometrically. Each compacton 
represents an eight-site structure that is shared by 
four unit cells, i.e. compactons are of the class U=4, 
as defined previously. Inside the central structure, 
the amplitude is zero, while two sites in each square 
plaquette have nonzero alternating equal ampli-
tudes. 

Now, if the artificial flux is ‘turned on’, we have 
the following situation, illustrated in Fig. 3. For 
Φ=2π, the fundamental compactons of the (only) 
zero energy FB are marked as C1. They have the 
same structure as the ones obtained for the flux-
free lattice – they are of the class U=4, have the 
central zero amplitude, but the difference is that the 
two sites in each square plaquette have equal am-
plitudes. The fundamental compactons correspond-
ing to two non-zero energy FBs (           ), formed for 
Φ=π, are marked C2 and C3 ( Fig.3). These com-
pactons are class U=5, i.e. they occupy 5 unit cells. 
Except for the amplitude of the central site which is 
zero, all other 4 sites of the unit cell have nonzero 
amplitudes. Same compactons C2 and C3 corre-
spond to the case of Φ=3π, but since the geometry 
of the band is ‘reversed’, the C2 type characterizes 
the FB          , whereas the C3 type compacton cor-
relates with the FB          . As a reminder, all linear 
combinations of fundamental compactons are the 
FB modes solutions, as well.

Figure 3. The linear compact mode amplitudes of FBs corre-
sponding to different values of the artificial flux.

Conclusion

In this paper, we explored the influence of the artifi-
cial gauge field on the energy band spectrum in the lin-
ear case and corresponding compact localized modes. 
We have found that, as a consequence of the artificial 
flux, the lattice hosts the Aharonov-Bohm effect which 
causes the appearance of flat zones in the correspond-
ing energy spectrum. Hence, for certain values of the 
flux, the lattice spectrum is described by two momentum 
independent, fully degenerated flatbands and three dis-
persive bands. Corresponding compact localized modes 
have been obtained. In the comparison with the flux-free 
case, now, 3 different types of fundamental non-orthogo-
nal compactons were found.

In the follow-up of this work, we will investigate the 
dynamical properties of compact localized modes, and 
their stability in the presence of disorder and/or nonlin-
earity. Since the plus lattice can be realized experimen-
tally, these findings could be tested in practice and they 
may have diverse practical applications, in settings like 
superconducting wire networks, topological lattices etc. 
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U ovom radu proučavana je fotonska linearna dvodimenziona plus rešetka treti-
rana fluksom kalibracionog polja kao i uticaj veštačkog kalibracionog polja, na en-
ergetski spektar. Usled Aharonov-Bomovog efekta dolazi do pojave ravnih zona i 
za određene vrednosti fluksa energetski spektar rešetke može se opisati sa dve 
potpuno degenerisane ravne zone i tri disperzivne zone. Pronađena su tri različita 
tipa fundamentalnih ne-ortogonalnih kompaktona. Predstavljeni rezultati mogu se 
proveriti u praksi i imaju potencijal za primenu u različitim okruženjima, kao što su 
mreže superprovodnih žica, topološke rešetke itd.
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