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SOME MATHEMATICAL CONCEPTS IN GEOMETRY OF MASSES
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ABSTRACT

The study of the distribution of geometrical points, loaded by some scalars plays an important role in various fields of
science, of theoretical and practical character. Since such study was first applied and studied when mass had the role
of played a scalar, the mass loaded point was named material point, and the discipline dealing with the arrangement
of material points in space is called the geometric mass. In that discipline, in the general case under mass one should
imply a scalar of arbitrary nature, which can be negative as well. For example, the discipline includes the study of
distribution of magnetic or electrical masses, which can be positive and negative. This paper presents some concepts
from the geometry of masses that play an important role, particularly in mechanics and physics.
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INTRODUCTION

The set of material points in the final or infinite number is
called the material system. The material points of system are ar-
ranged discretely or continuously. Each mass, even the smallest,
needs to take up some, perhaps even a very small volume. On the
other hand, for a large mass we can take a geometric point and
consider that the point with the overall mass represents the mass
(Awrejcewicz, 2012). If it can be prove that all the points of the en-
tire mass move as the selected representative point, then selected
geometric point represents the entire mass and exists as a discrete
material point (Mirtich, 1996; Whitaker, 1992).

THE CONCEPT OF DENSITY OF CONTINUOUSLY DIS-
TRIBUTED MASSES

For the system of continuously distributed masses firstly is
introduced the concept of medium volumetric density, as a ratio
∆m/∆V where ∆V is the volume and ∆m is the mass in the volume.
Then, it can be introduced the concept of density of a given body
at a given point M as

σ = lim
∆V→0

∆m
∆V

=
dm
dV

,

where dm is the mass differential and dV is the differential of the
corresponding volume. In general case, the density σ depends on
the position of the point M in the given body. It is expressed by the
following equation σ = f (M) = f (µ), where µ is the radius-vector
of point M with respect to a origin, i.e. of permanent position O to
the body, that is µ =

−−→
OM. If the vector µ is determined using the

Cartesian coordinates (x, y, z) of the point M, then the density is
scalar function σ = f (x, y, z). Finally, if the density is given for all
points of volume V , the mass of the body m is determined by the

integral (Bilimović, 1961; Dorogovtsev, 1987)(in english):

m =

˚

V

σdV =

˚

V

σ(x, y, z)dxdydz

extended to the entire volume V of the body.
Regardless of each mass having have to occupy a volume, it

can also be discussed on the surface and the linear distribution of
the masses. The examples of surface mass distribution can be ma-
terial plates, covers, shells, sheet metal, etc. and the examples for
linear distribution of masses can be rods, wires, cords etc. Related
to such distributions we can talk about medium surface density
∆m/∆A, where ∆m is the mass and ∆A is a part of the surface of
the mass. Limit value

σ1 = lim
∆A→0

∆m
∆A

=
dm
dA

,

is surface density in the given point M. Similarly,

σ2 = lim
∆`→0

∆m
∆`

=
dm
d`
,

is the linear density (of a given wire at a given point M).
Note that the above densities have different dimensions, i.e.

it is valid

[σ] = ML−3, [σ1] = ML−2, [σ2] = ML−1

where M is the mass, as measured by, say, grams, and L indicates
the length in centimeters. Determination of body mass of density
is calculated as the double integral

m =

¨

A

σ1(u, v)
√

EG − F2dudv =

¨

A

σ1(x, y)dxdy,

where A is the surface of the body. In the case of linear mass dis-
tribution we have the following integral

m =

¨

L

σ2(`)d`,
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where d` is the element of length extended to the entire length of
the curve. For a real wire it is

m =

¨

L

σ2(x)dx.

If σ,σ1, σ2 are constant values, the matter of the body is homo-
geneous and to calculate body mass it is sufficient to know the
volume i.e. the surface or the length of the body, because in these
cases

m = σV = σ1A = σ2L.

In the cases of non-homogeneous (heterogeneous) matter, body
mass is not proportional to the density.

CENTER OF MASSES OR CENTER OF INERTIA

If related to the point M is the mass m and
−−→
AM is the vector

of position of the point M in respect to point A, the result m
−−→
AM

is called the position vector burdened by mass m (of the point M
in respect to point A)(Bessonov & Song, 2001). Suppose that we
have a set of n points of M1,M2, ...,Mn with masses m1,m2, ...,mn

and one particular point of space A. The position vector for each
point of this set may be constructed burdened by mass relative to
point A and we can make a summation of all constructed vectors
m1
−−−→
AM1 + · · ·+mn

−−−→
AMn. The result of this sum is a vector starting at

point A. If this vector is divided by the entire mass m =
∑n

j=1 m j,
we will get a new vector, whose the end we will mark with C. In
this manner, the vector equation

m
−−→
AC =

n∑
j=1

m j
−−−→
AM j (1)

determines the point C. Thus defined point C is called the center
(of inertia of the masses).

In following, we shall examine some typical properties of
the center of inertia. In this sense, we shall prove two simple
propositions that justify the meaning that this point was called the
center.

Theorem 1. The position of point C of a given material system
do not depends on the choice of point A, i.e. the beginning of the
position vector of all constructed points.

Proof. Let us take as the starting point, besides A, some other an
arbitrary point A1 , A. If we denote with C1 the appropriate center
of inertia of the point A1, we obtain the new vector equation

m
−−−→
AC1 =

n∑
j=1

m j
−−−−→
A1M j. (2)

Notice that
−−−→
AC1 =

−−−→
A1A +

−−→
AC +

−−−→
CC1 and

−−−−→
A1M j =

−−−→
A1A +

−−−→
AM j,

j = 1, . . . , n (see Fig. 1). Now, if we put those vectors in the Eq.(2),
and taking into account the Eq.(1), we get

m
−−−→
A1A + m

−−→
AC + m

−−−→
CC1 =

n∑
j=1

m j
−−−→
A1A +

n∑
j=1

m j
−−−→
AM j

☎

Figure 1. Determining the center (of inertia of the masses).

which implies
−−−→
CC1 =

−→
0 . Thus, the center C1 coincides with the

original one.

Remark 2. According to Theorem 1, it follows that the position of
the center depends only on the size of the masses and the distribu-
tion of these masses in the area. Therefore, the center of masses is
an important natural point of any material system.

Theorem 3. The sum of the position vectors of points M j, in re-
lation to the center C and weighted by the masses m j is equal to
zero, i.e.

n∑
j=1

m j
−−−→
CM j =

−→
0 . (3)

Proof. Let us consider again the Eq.(1). In order to determine the
point C, into this equation let we put

−−−→
AM j =

−−→
AC +

−−−→
CM j, j =

1, . . . , n. Thus, we have:

m
−−→
AC =

n∑
j=1

m j

(
−−→
AC +

−−−→
CM j

)
,

or, equivalently:
n∑

j=1

m j
−−−→
CM j =

−→
0 ,

which was supposed to be proven.

Remark 4. From the basic vector Eq.(1) for the center C it follows
that:

−−→
AC =

n∑
j=1

λ j
−−−→
AM j (4)

where λ j = m j/m, j = 1, . . . , n and
∑n

j=1 λ j = 1. Thus, vector
−−→
AC is the convex combination of vectors

−−−→
AM1, . . . ,

−−−→
AMn. In the

Cartesian coordinates, Eq.(4) can be written as:

−→µc =

n∑
j=1

λ j
−→µ j, (5)

where −→µ c =
−−→
AC = (xc, yc, zc) and −→µ j =

−−−→
AM j = (x j, y j, z j). In

this way, to the vector Eqs.(4)-(5) correspond the following three
scalar equations

xc =

n∑
j=1

λ jx j, yc =

n∑
j=1

λ jy j, zc =

n∑
j=1

λ jz j.
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These are the basic scalar equations for determining the position
of the center of masses.

Remark 5. If the masses of a material system are distributed in a
certain area continuously, the sums extended to all material points
of the system pass into defined integrals extended to the areas of
continuous matter. Then we have the vector equations:

−−→
AC
˚

V

dm =

˚

V

−→µdm

or
−−→
AC
˚

V

σdV =

˚

V

σ−→µdm.

The scalar form of Ox is:

xc =

˚

V

σxdV :
˚

V

σdV

The analog integrals apply in the case of masses continuously dis-
tributed over the surface and along the lines.

Remark 6. If the matter of body is homogeneous, the multiplier of
density σ entering the numerator and denominator can be short-
ened, and thus for the homogeneous bodies we have patterns in
which the mass is not included. These patterns can be considered
as forms for the determination of the center of inertia of a volume
i.e. of a surface or line. Thus, we have:

xc =

˚

V

xdV :
˚

V

dV, x′c =

¨

A

xdA :
¨

A

dA, x′′c =

ˆ

L

xdl :
ˆ

L

dl

Remark 7. If the arrangement is symmetrical with respect to a
plane, or a line or point, the center of masses must lie in that plane,
on the line or at that point.

PAPPOS-GULDIN’S THEOREMS

Regarding the concept of the center of masses we list two
so-called Pappos-Guldin’s theorems.

Theorem 8. The area which is obtained by rotating the arc of a
curve in the plane about an axis in the plane, which does not cut
the curve, is equal to the product of the arc length and circumfer-
ence of a circle described by the mass center of this arc.

Proof.

✝ ✝

✝ ✝

✝ ✝

✝ ✝ ☎ ☎ ✂ ✂

✂

✂

☎

☎

Figure 2. Arc of a curve in the plane.

Let a part of the flat curve, from point A to point B, rotate
about an axis p on the curve plane and does not cut the curve,
but only points A and B can belong to the axis. Let ∆l be the dis-
tance between two very close points of the curve (see Fig. 2). Area
formed by ∆l in reversing (i.e. the side surface of the cylinder,
coupe, truncated cone or a circular ring) is equal to 2πrs∆l, where
rs is the distance of the middle of the line ∆l from the axis of
rotation. Since in the border case the area is expressed by 2πrdl,
where dl is the differential of the curve arc and r is the distance of
an arbitrary point of the arc from the rotation axis, accordingly the
surface S , described by the arc AB is equal to:

S = 2π
ˆ

L

rdl, where L is the arc of AB.

If we use rc to mark the distance of the center of mass C of the arc
L from the straight line p, then we have the equation:

Lrc =

ˆ

L

rdl.

If this value of integral is put into the previous equation it gives:

S = 2πrcL.

Theorem 9. The volume which is obtained by rotating the flat sur-
face around the axis in the plane, which does not cut the surface,
equals to the product of the surface value and the circumference
of a circle described by the center of masses of the surface.

Proof. Suppose that the flat surface P rotates around the axis p,

✝

Figure 3. Flat surface in a plane.

which does not cut the contour of the surface (see Fig. 3). Volume
V , which is obtained by reversing the surface, can be calculated
using the double integral:

V = 2π
¨

P

rdrdh

where r is the distance of the point of elementary rectangle of di-
mensions dr and dh from the axis of rotation. If we write down the
equation for determining the center of mass C of the area P with
respect to line p, the following is obtained

Prc =

¨

P

rdrdh
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where rc is the distance of the center of mass of the surface P
from the line p. When this integral value is put into the previous
equation, we get:

V = 2πrcP

which is supposed to be obtained.

AXIAL SQUARE MOMENT OF INERTIA

Let there be given the line p and the material point of
the mass m at the distance d from the line. The product md2 is
called the axial square moment of the given material point rela-
tive to the given line. If there are more material points with masses
m1,m2, . . . ,mn at distances d1, d2, . . . , dn of the given line p, for
the moment of inertia of the system we have the equation and the
mark:

Ip =

n∑
i=1

mid2
i

If the coordinates of mass mi are marked by xi, yi, zi in relation to
the Cartesian coordinate system, then three moments of inertia can
be introduced:

Ix =
∑

mi

(
y2

i + z2
i

)
, Iy =

∑
mi

(
z2

i + x2
i

)
, Iz =

∑
mi

(
x2

i + y2
i

)
.

For continuously distributed masses the sums are replaced by in-
tegrals. For the moment of inertia about the x-axis we have:

Ix =

˚

V

σ (x, y, z)
(
y2 + z2

)
dxdydz.

It is similar for the other axis.
The term axial moment of inertia can be applied both to masses
spread across the surface and the curve, both in the case when the
curve and axis lie in the same plane, and in the case when the
curve, which can also be spatial, occupies an arbitrary position in
relation to the axis of moment of inertia.
To better explain the afore mentioned mechanical phenomena, the
concept of kinetic energy i.e. energy of movement can further be
introduced. This highlights the importance of multiple integrals in
mechanics. For a material point of mass m, moving at speed of
intensity v, the kinetic energy is calculated by the form 1

2 mv2.
When a solid body is moving translational its points have the same
speed. Then taken for the representative of the body is the center
of masses point C, and as the speed of all points −→vc velocity is
determined with intensity vc. If T marks the kinetic energy of a
solid in the case of translational movement, then it follows:

T =
1
2

n∑
i=1

miv2
c =

1
2

mv2
c

where m is the overall mass of the body. Accordingly, in the trans-
lational motion, the kinetic energy of the body is expressed in the

same way as the kinetic energy of a single material point.
Now we look at a rotary motion of a solid body, i.e. rotation about
a fixed axis. The velocity intensity vi of some point Mi of the body
which is at the distance di from the axis can be calculated using
the formula:

vi lim
∆t→0

∆S i

∆t
= lim

∆t→0

di∆α

∆t
= di lim

∆t→0

∆α

∆t
= diω

where ∆S i is the element of the roundabout of point Mi, ∆α in-
finitely small rotation angle and:

ω = lim
∆t→0

∆α

∆t

the intensity of angular velocity of the body. Thus, for the kinetic
energy of each point of a solid body it can be put as follows:

1
2

mid2
i ω

2
=

1
2
ω2

(
mid2

i

)
,

and for the whole body we will get:

T =
1
2

Iω2 where I = lim
n→∞

n∑
i=1

mid2
i ,

i.e. moment of inertia of the body about the axis of rotation.
If we compare the expressions:

T =
1
2

mv2
c and T =

1
2

Iω2

we see that in the first expression the kinetic energy depends on
the square of the linear velocity, and in the other on the square of
the angular velocity. In the first expression we have a coefficient
m, and in the second I and both are called inertial coefficients-the
first for the translational movement and the second for rotational
movement.
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