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ABSTRACT 

During exploitation, motor vehicles are exposed to vibrational loads that lead to fatigue of users and materials of their 
aggregates. Therefore, vibrations must be studied even in the earliest stages of design, using mathematical models, 
experiments, or their combinations. In theoretical considerations, vibrations of concentrated masses are usually ob-
served, although, with the recent development of numerical methods (especially finite element methods), attention 
is also being paid to vibrations of vehicle elastic systems. This usually involves idealizations, especially regarding ex-
ploitation condtions and interconnections of motor vehicle aggregates. 

In this paper, an attempt has been made to develop a method for identifying real vibrational loads of elastic power 
transmission shafts in vehicles (engine, rail, etc.) under exploitation conditions. Namely, 2D Fourier transformation 
was used for two-parameter frequency analysis. The possibilities of applying the procedure were illustrated on an 
idealized elastic torsionally loaded shaft. The conducted research showed that two-parameter frequency analysis can 
be used in generating torsional vibrations of elastic shafts of vehicles in laboratory conditions. 
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1. INTRODUCTION 

During exploitation, motor vehicles are exposed to vibrational loads that lead to fatigue of users and materials of their 
aggregates. Therefore, vibrations must be studied even in the earliest stages of design, using mathematical models, 
experiments, or their combinations. In theoretical considerations, vibrations of concentrated masses are usually ob-
served, although, with the recent development of numerical methods (especially finite element methods), attention 
is also being paid to vibrations of elastic vehicle systems. This usually involves idealizations, especially regarding ex-
ploitation conditions and interconnections of motor vehicle aggregates [1]. 

The specificity of the exploitation conditions of vehicles is their random nature [1], which significantly complicates 
theoretical considerations using models which makes experiments practically indispensable. Despite significant pro-
gress in the development of software for the automatic design and calculation of vehicles [4], the final judgment on 
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their characteristics is based on experimental research. Hence, experimental methods are still significant today. Re-
garding elastic vehicle power transmission shafts that are subjected to torsional vibrations, there is often a problem 
in identifying the parameters of these vibrations. 

In this regard, methods for their identification have been developed, such as modal analysis [5-10]. In laboratory con-
ditions, vibration modes are practically determined. However, a problem arises in the case when real exploitation 
conditions are necessary to generate torsional loads on test equipment since modal analysis does not provide suffi-
cient possibilities for generating these signals. Therefore, it was deemed appropriate to develop a procedure for iden-
tifying the parameters of torsional vibrations of elastic vehicles power transmission shafts, which would enable their 
generation under laboratory conditions. 

One possibility is frequency analysis using Fourier transformation, which enables the determination of the frequency 
content of the signal by calculating spectra magnitudes and phase angles [11]. Data on the spectra magnitudes and 
phase angles, using inverse Fourier transform, enable the generation of the original, time-dependent signal, which is 
per-formed routinely in cases where the signal depends only on time [11]. 

However, vibrations of elastic systems depend on several parameters (dimensions and time), leading to the conclu-
sion that multi-parameter Fourier transformation must be used [12-16]. In the case of idealized (neglecting other 
types of vibrations) torsional vibrations of elastic shafts, the so-called two-parameter Fourier transformation (2D) can 
be used [13,14], as the vibration change along the length of the shaft and time. 

This paper analyzes the possibilities of using the two-parameter Fourier transform to create conditions for studying 
vibrations of elastic power transmission shafts in vehicles under laboratory conditions. Therefore, a general expres-
sion for the Fourier transform will be given in the case of multiple variables [17]: 

 
ξ ξ ξ π ζ ζ ζ= − + + +1 2 1 1 2 2

1 2 1 2

( , .... ) 2 ( ... ) *

( , .... ) * * * *
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n n n
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where: 

− 1 2( , .... )nf x x x  - a function of n variables, 

− 1 2, .... nx x x  - variables, 

− ξ ξ ξ1 2, .... n  - circular frequency, 

− 
nR

- multiple integral (for 2D - double, 3D - triple, etc.). 

2. METHOD 

As previously noted, this paper aims to explore the possibility of using two-parameter frequency analysis (2D Fourier 
transform) for identifying parameters of torsional vibrations of elastic vehicles power transmission shafts. Considering 
that elastic elements and assemblies of vehicles can be simplified by modeling them as elastic-continual systems, it 
was deemed appropriate to explain the process using torsional vibrations of power transmission shafts of vehicles 
and 2D Fourier transform. 

In the absence of experimental data on registered torsional vibrations of the shafts, the method was illustrated using 
data obtained from a mathematical model, i.e., dynamic simulation. As known, vibrations of elastic elements describe 
partial differential equations [13,14]. Since the partial differential equations that are described with torsional vibra-
tions of elastic shafts are described in detail in [13,14], it will not be done here. Instead, its final form will be presented 
for further consideration, as shown in Figure 1. 

In defining the model of torsional vibrations of an elastic shaft, the following assumptions were made: 

• forces Fo1 and Fo2 are constant, and the influence of non-uniformity of the rotational movement of the shaft 
is covered by a special function, 

• disturbance torque, for the sake of simplification of the problem, the influence of radial forces that cause 
transverse vibrations of the shaft will be neglected - this was possible to do because torsional vibrations 
originating from real loads are registered in operational conditions [16], and in this paper, only the idea of 
the method is considered.  
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• during the rotation of gears in oil, resistance torque appears due to viscosity, which is proportional to the 
speed of torsional vibrations - the influence of oil on torsional vibrations of the shaft is neglected, gears are 
rigid and have the same vibrations as the ends of the shaft, and they are replaced with discs,  

• gears with straight teeth are observed, so axial loads that are transferred to bearings are omitted, and  

• the shaft is elastic and has a constant circular cross-section. 

 

Figure 1: Force and torque diagram of elastic shaft 

Taking into account the introduced assumptions, forced torsional vibrations of the elastic shaft [13,14] are described 
by a partial differential equation: 
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where: 

− ( , )u x t  - torsional vibrations of the shaft, 

− x  - coordinate along the length of the shaft, 

− ( , )f x t  - disturbance torque originating from non-uniform coupling of gears at the ends of the shaft, 

− t - time. 

=2 G
c

P
 

where: 

− G  - shear modulus, and 

− ρ  - shift material density. 

As it is known [13,17], to find the general integral of the partial differential equation (2), it is necessary to know the 
boundary and initial conditions.  

The boundary condition is derived from the condition of equality of the torsional torque of the left end of the shaft 
and the sum of torques that describe the dynamic behavior of the left gear. Using the adopted assumptions is ob-
tained: 

= − − +2 2 2 2o rI u F r M M  
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 - torque in the elastic shaft. 

So it can be written as:  
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Similarly, this can be done at the right end of the shaft:
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To define the boundary conditions of the left end of the shaft, x = 0 should be placed, and for the right end, x = L, 
where L is the length of the shaft.  

The following abbreviations were used in expressions (3,4):  

− Fo1, Fo2 - circumferential forces on the gears,  

− r1, r2 - radius of the gears,  

− I1, I2 - axial moments of inertia of the gears defined by the expression:  

= =
2

, 1,2
2
j j

j

m r
I j  

where:  

− mj - masses of the respective gears,  

− rj -radius of the respective gears,  

− Io - the polar moment of inertia of the circular cross-section of the elastic shaft given by the expression: 

π
=

4

0 2
r

I  

where: 

− r is the radius of the shaft, and  

− k is the coefficient that takes into account the friction due to the viscosity of the oil.  

It was deemed appropriate to use the following forms of disturbance torque in the partial differential equation (2): 

=
=
=

= −

( , ) sin( )

( , ) sin( )

( , ) sin( )

( , ) ( 0.5)

m

m

m

m

f x t a t

f x t a x

f x t a x t

f x t a rnd

 

where:  

• am is the amplitude, and   

• rnd - random numbers uniformly distributed in the interval [0,1].  

The following initial conditions were assumed for analysis: 

=( , ) 0u x t  
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0
u x t
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for t = 0.  

The integral of the partial differential equation (2), with the boundary (3,4) and initial conditions (5) in final form, can 
only be searched in the case of harmonic excitation [13,14] . 

Therefore, an attempt was made to solve it using the Wolfram Mathematica 13.2 software [17]. However, difficulties 
arose with listing numerical data, so it was decided to solve the problem numerically [18], using the finite difference 
method. Since this process is known from [18], it will not be discussed here, and the problem was solved using the 
software developed in Pascal.  

Dynamic simulation was performed for a steel elastic shaft, using the following data: G = 8 * 104, N/mm2; ρ = 8 * 10-6, 
kg/mm3; m1 = 2, kg; m2 = 1.5, kg; r1 = 100, mm, r2 =120, mm; r = 15, mm; k = 1, Nm s/rad; Fo1 = 2000, N; Fo2 = 1850, N; nx 
= 256, hx = 2, mm; nt = 256; ht = 0.01, s; am = 20, Nm.  

Since torsional vibrations of the elastic shaft depend on two parameters, it is necessary to use 3D graphics for their 
graphical representation.  

For illustration, the results of numerical integration of the partial differential equation (2), with boundary conditions 
(3,4) and initial conditions (5), are shown in figures 2-5.  
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Figure 2: Torsional vibrations of the shaft for  
the excitation function u(x,t)= am*sin(t). 

 

Figure 3: Torsional vibrations of the shaft for  
the excitation function u(x,t)= am*sin(x) 

 

  

Figure 4: Torsional vibrations of the shaft for  
the excitation function u(x,t)= am*sin(x t) 

 

Figure 5: Torsional vibrations of the shaft for  
the excitation function u(x,t)=am*sin(rnd-0.5) 

 

By analyzing figures 2-5, it can be observed that torsional vibrations have a harmonic character that travels in the 
form of waves along the length of the shaft, which is following the theoretical solutions from [13,14]. When excitation 
functions are harmonic functions, the character of torsional vibrations is more regular, while for random excitations, 
waves are less noticeable because the superposition of multiple waves with different wavelengths occurs.  

Torsional vibrations of an elastic shaft depend on displacement x and time t, so a 2D Fourier transformation must be 
applied. The author developed software in Pascal for its realization. However, considering the available software on 
the market, it is considered appropriate to use Origin 8.5 [19] for further analysis, as potential users will have easier 
access to that software.  

Using the mentioned software, the spectra magnitude and the phase of the two-parameter Fourier transform were 
calculated, and the results are shown in images 6-13.  

  

Figure 6: Spectra magnitude of torsional vibrations 
of the shaft for the excitation u(x,t)= am*sin(t) 

Figure 7: The phase angle of torsional vibrations of 
the shaft for the excitation u(x,t)= am*sin(t) 
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Figure 8: Spectra magnitude of torsional vibrations 
of the shaft for the excitation u(x,t)= am*sin(x) 

Figure 9: The phase angle of torsional vibrations of 
the shaft for the excitation u(x,t)= am*sin(x) 

  

Figure 10: Spectra magnitude of torsional vibrations 
of the shaft for the excitation u(x,t)= am*sin(x t)  

Figure 11: The phase angle of torsional vibrations  
of the shaft for the excitation u(x,t)= am*sin(x t)  

  

Figure 12: Spectra magnitude of torsional vibrations 
of the shaft for the excitation u(x,t)= am*(rnd-0.5) 

 

Figure 13: The phase angle of torsional vibrations of 
the shaft for the excitation u(x,t)= am*(rnd-0.5) 

 

3. DATA ANALYSIS 

Analysis of the data presented in Figures 6-13 leads to the conclusion that the spectra magnitude and phase angles 
identify the character of torsional vibrations of the elastic shaft. The solution of the partial differential equation (2) 
and the data obtained from the spectra magnitude and phase of the 2D Fourier transform show the wave-like char-
acter of the vibrations, which is following [13,14]. The waves are more noticeable in cases of harmonic forms of exci-
tation functions, such as sin(t) and sin(x), which also holds partially for sin(xt), while in the case of random excitation, 
the waves are chaotic, as expected.  

Based on the previous analyses, it can be concluded that the two-parameter Fourier transform reliably enable the 
analysis of data on torsional vibrations of the elastic shaft, which can have practical applications. The calculated spec-
tra magnitude and phase angles, using the two-parameter inverse Fourier transform, allow for the generation of iden-
tical vibrations in the laboratory as those registered under operational conditions [19].  
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It should be noted that there are no explicit procedures for calculating spectral analysis errors in two-parameter Fou-
rier transforms, as in the case of 1D Fourier transforms [11]. Considering this and the fact that this study is only aimed 
at illustrating the potential application of two-parameter frequency analysis in investigating torsional vibrations of 
an elastic shaft of vehicles, statistical error analysis was not performed.  

It is worth noting that the inverse Fourier transform can be performed using the mentioned software, Origin 8.5 [19]. 

In the end, it should be noted that experimentally obtained data, processed by the 2D Fourier transformation, can be 
used in the laboratory to generate signals identical to those registered in exploitation conditions. During exploitation 
tests, it is necessary to record parameters of torsional vibrations of the elastic shaft (stress, angular displacement, 
speed or acceleration, and so on..) along its length, over a longer time. The selection of sensor placement steps is 
related to the minimum and maximum values of the frequency content. Namely, the minimum and maximum values 
of these parameters depend on the length of the shaft, i.e. the length of the time signal and the sample step.  

First, the maximum interesting frequencies fxmax and ftmax should be adopted, and then the step of placing the sensor 
and sampling the time signal is defined based on the expression (Nyquist frequency) [11]:  

= =min min

1 1
x tf f

L T
 

The minimum interesting frequency is obtained based on the length of the shaft (L=nx*hx), i.e. the length of the time 
signal (T=nt*ht) according to the expressions:  

= =
max max

1 1
2 2x t

x t

h h
f f

 

Finally, it should be emphasized that the developed procedure has created conditions for analyzing the influence of 
integration steps on the accuracy and stability of solutions to the partial differential equation (2), the influence of 
design parameters on torsional vibrations of the elastic shaft, the influence of excitation torques, etc. However, given 
that the results of dynamic simulation in this study should only serve as a substitute for missing experimental results, 
it was estimated that a more detailed analysis is not necessary. 

4. CONCLUSION 

Based on the conducted research, it can be stated that the two-parameter Fourier transform reliably enables the anal-
ysis of experimental data of torsional vibrations of an elastic shaft. Calculated spectra magnitude and phase angles, 
with the application of the inverse 2D Fourier transform, enable the generation of identical vibrations in the labora-
tory as well as in operating conditions.  
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