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ABSTRACT 

The discovery of carbon nanotubes (CNTs) has renewed a major chapter in the field of physics, chemistry, mechanics 
and materials science owing to their high-quality possession of: excellent tensile strength, high conductivity, high 
aspect ratio, thermally stable and high chemical stability. This work studies the dynamic and instability analysis of 
single walled carbon nanotube with geometrical imperfection resting on elastic medium in a magneto-thermally-
electrostatic environments with impact of Casimir force. However, Eringen nonlocal theory and Hamilton principles 
are used to develop the nonlinear governing partial differential equations of motions and the governing equations 
of motion is converted into a duffing equation using Galerkin decomposition method and subsequently, the duffing 
equation is solve using Homotropic Perturbation Method (HPM), where dynamic responses are obtained. The results 
obtain depicted that, the effects of magnetic term, thermal term and Pasternak type foundation on dimensionless 
amplitude-frequency ratio for fixed-fixed and fixed-simple supports make the investigation novelty as it can be used 
as reference in future study. Finally, the deflection curves show how the compression zone is augmented using Casi-
mir and electrostatic forces and the results obtained show reasonable accuracy. 
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1. INTRODUCTION 

The discovery of carbon nanotubes (CNT) by Iijima has renewed a major chapter in the field of mechanics, physics, 
chemistry and materials science owing to their possession of high strength, stiffness etc. as tomorrow society will be 
shaped with the potential use of nanoscale structures. Because of these novelty, nonlinear vibrational analysis of car-
bon nanotubes has been continuously subjected to several investigation to unraveled its dynamically responses un-
der various end support conditions.  

Ravi kumar B. (2017) studied vibrational response of doublewalled carbon nanotubes (DWCNTs) for several end sup-
ports using differential transform method (DTM).  
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Payam Soltani et al. (2011) analyzed transverse vibrational of singlewalled carbon nanotubes (SWCNT) embedded in 
a spring foundation for various end supports using perturbation method of multi-scales.  

Ghasemi et al. (2015) used variation iteration method (VIM) and energy balance method (EBM) to study nonlinear 
Vibrational response of carbon nanotubes with Nonlocal Timoshenko Beam Theory and the results obtained from the 
above analytical methods was comparison with Runge-Kutta order four with high agreed solutions.  

Fu et al. (2006), investigated nonlinear free vibrations of embedded multi-walled carbon nanotubes with intertube 
radially displacement using increment harmonic balance method. Subsequently, the amplitude frequency response 
curves for both nonlinear free vibrations of single-walled and double-walled carbon nanotubes was obtained and 
discussed extensively.  

Ender and Hamed (2014) studied nonlinear free vibrational analysis of slightly curve double walled carbon nanotube 
embedded in an elastic spring using differential quadrature method (DQM) to discretize the partial differential equa-
tions of motions with different support conditions with observation that support conditions have significant effects 
on the natural frequencies of double-walled carbon nanotubes including multiple solutions.  

Wu et al. (2018) studied nonlinear free vibrations analysis of multiwall carbon nanotube embedded in an elastic spring 
using a direct iterative approach.  

Venkatraman and Suji (2022) presented flow-induced nonlinear vibrational behaviour of single walled carbon nano-
tube under elastic foundation using homotopic perturbation method and elliptical functions for exact solution of 
differential equations. The obtained results of both HPM and exact solutions are compared for linear and nonlinear 
frequencies.  

Musab and Shaymaa (2016) studied effects of multi-walled carbon nanotubes on the behavioral of reinforced con-
crete beam under monotonic loads. Moreso seven beam was loaded to failure under the effects of two concentrated 
loadings, only reference beams were reinforced with steel reinforcement and rest six-beam was reinforced with 
shorter and longer Multi-Walled Carbon Nanotubes at different concentrated interval of 0.03% and 0.06% by weight 
of dry Cementous in addition to steel reinforcement.  

Khader et al. (2014) analyzed nonlinear dynamic vibration analysis of multi-walled carbon nanotubes embedded in 
elastic medium using homotopy analysis method (HAM). Subsequently, the amplitude frequency curves for larger 
amplitude vibrations for single, double and triple-walled carbon nanotubes are obtained and compared with 
Adomian decomposition method.  

Tai-Ping (2013) performed dynamical analysis of nonlinear vibrational of fluid conveying doublewalled carbon-nano-
tubes using perturbation methodology. Furthermore, the nonlinear govern equation of the fluid conveying decom-
posed into set of partial differential equations and galerkin decomposition technique is use to analysis the resulting 
nonlinear equations successively.  

Wang and Wang (2022) studied vibrational analysis carbon-nanotubes fixed in elastic foundation using new novelty 
method of Hamiltonian Based Method to analyzed frequencies property of nonlinear vibrations. Furthermore, effec-
tive and reliability of  new novelty method was verify through numerically solutions and results obtained are expected 
to be useful for future investigation of nonlinear vibrational analysis.  

Valipour et al. (2016) characterized nonlinear vibrational of embedded single walled carbon-nanotube on Pasternak 
typical model using parameterised perturbations method to solved the resulting partial equation of motions and it 
depicts by increasing the Winkler-type constant, the nonlinear frequencies decrease as well.  

Hossein and Hemmatnezhad (2011) applied homotopy perturbation method to solve nonlinear frequency of multi-
walled carbon-nanotubes fixed in an elastic foundation with several supported ends as well as obtained solutions for 
amplitude frequency curves for larger-amplitude vibration of singlewalled, doublewalled, and triplewalled carbon-
nanotubes. Solutions obtained from analytical and open literation are compared and there are in higher agreement 
as a new benchmark for future reference.  

Hossain and Lellep (2021) modelled dynamic behaviour of SWCNTs partially fixed into elasticity soil foundation by 
Euler Bernoulli beam and nonlocal theories of elasticity using semi-analytic method to solve the resulting governed 
partial differential equations of motion. Furthermore, effect of temperature, coefficient of elasticities medium and 
nonlocal parameter of dynamical behaviour of SWCNTs was mainly focus and was concluded as the results of the 
simulations conducted have significant effect on natural frequency of nanotube structures under investigation.  

Chuanyong (2007) employed Donnell equations of cylindrical shells to investigate nonlinear vibrational behavior of 
a multi-walled carbon nanotubes under elastic multilayer shell model considering van der Waals interaction with 
negligible between the inner-outer tubes in of the proposed model and th van der Waals interaction between each 
layer show that its presence forces can strongly influence the buckling and nonlinear vibrational of the multiwalled 
carbon nanotubes.  
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Tai-Ping and Quey-Jen (2018) investigated effects of chaotic behaviors of single walled carbon nanotube for both 
linear-nonlinear damping using the Hamilton’s principle. Galerkin’s decompactions is use to simplify the integro par-
tial differential equations of motion into nonlinear dimensionless governed equation of motions. Subsequently, 
forced Duffing equation was obtained. Also, they studied variations of Lyapunov exponents of the single walled car-
bon nanotube with damping-harmonic forcing amplitudes. Lyapunov exponent shows that chaotical motions of the 
single walled carbon nanotube occurred when both the amplitude of the periodical excitations exceeds expected 
values, smaller linear and nonlinear damping’s.  

Chowdhury et al. (2010) investigated vibrational properties of armchair-zigzag SWCNT using molecular mechanic to 
obtained natural-frequencies of vibrations and there modes. Furthermore, simulation of four and three different types 
of zigzag and armchair SWCNTs such as (5, 0), (6, 0), (8, 0), (10, 0) and (3, 3), (4, 4), (6, 6) are carried. Moreso, the results 
obtained show that as natural frequency decrease, aspect ratios increase and there all follow similarity trends with 
result of past studies for CNT using same methods.  

Azrar et al. (2014) modelled flow induces nonlinear free vibrations of SWCNT using von Kármán Eringen’s nonlocal 
elasticity and geometric nonlinearity theory. Furthermore, partial differential governing equations of motion with 
boundary conditions was derived using the Hamilton’s principle and the equation of motion is solved using Galerkin’s 
technique. Moreso, with use of this principles, the following can be investigated, small scale parameter, fluid tube 
interaction effects and instabilities induce by the fluid-velocity. Moreso, critical fluid velocity, frequency-amplitude 
relationships, flutter and divergence instabilities type with time responses was acquired through the approached 
methodology.  

Abdelkadir et al. (2016) investigated bending vibrational and dynamical analysis of singlewalled carbon-nanotube 
using nonlocal elastic theory. Furthermore, they also compute natural-frequencies and mode shapes of the single 
walled carbon nanotubes using semi-analytical technique of differential quadrature (DQ). Moreso, the results ob-
tained are in agreement with numerical method of exact solution.  

Farhand (2014) presented gradient elasticity of shell for free vibrational analysis of singlewalled carbon nanotubes 
under Winkler and Pasternak medium. Furthermore, they investigated effect of the length-scale parameters, aspects 
ratio of singlewalled carbon-nanotube and spring parameters on the fundamental’s frequency for several values’ half 
axial and circumferential wave numbers. Moreso, natural-frequencies acquired by methodology shows effect of size 
dependent properties. Finally, its concluded as well that a continuum modeled enriched with higher order inertia 
terms are proposed as an alternative to continuum descriptions acquired through classical elasticity theories.  

Matteo et al. (2014) considered Low-frequency vibrational analysis of SWCNTs with different boundary conditions 
using two approached of semi-analytical method. Furthermore, first method, used Rayleigh Ritz method, of doubly 
series expansions in term of Chebyshev polynomial-harmonic functions where, free and clamped edges was analyzed 
as the method is partially numeric while other method was basically on thin shell theories and its aims is to obtained 
analytical solutions for future usage in nonlinearity fields. The results obtained from this method was validated with 
experimental values of molecular dynamical data with FEA from literature.  

Soltani et al. (2011) investigated nonlinear free-force vibrational analysis of singlewalled carbon-nanotube consider-
ing simply supported ends using von Karman’s geometrical nonlinearity theory. Furthermore, Galerkin's techniques 
is used to discretized the govern PDEs into an ODE of motions. Thereafter, methods of averaging is applied to solve 
nonlinear vibrations of following zig-zag single-walled carbon nanotubes as (10, 0), (20, 0) and (30, 0) in analytical 
calculations. Moreso, the following was investigated, there are; different aspect ratios, effect of nonlinear parameters, 
different circumferential and longitudinal half-wave numbers. In addition, freed and forced motion due to harmonical 
excitations was investigated in the analysis. It depicted, that (30, 0) zig-zag single-walled carbon nanotube exhibit 
lesser nonlinear behavior like other carbon nanotube for constantly aspect ratio. It was concluded from the result 
obtained that for smaller value of aspect ratios, vibrational behaviors are softening-type for lower amplitudes and it 
is hardening-type for larger amplitude and for larger values of aspect ratio, vibrational behaviors are hardening-type 
for every amplitude.  

Hussein et al. (2015) studied nonlinear vibrational analysis of singlewalled carbon nanotubes embedded in Kelvin-
Voigt elastic-medium, considering an elastic Euler Bernoulli beam with von- Kármán type geometric nonlinear. There-
after, Hamilton’s principle is use to drive the PDE as governing equation of motions and nonlocal elastic fields theory 
was used to introduced smaller-scale effects into the equations of motion. Galerkin’s decomposition method was 
used to reduce the resulting PDEs into an ODE and was subsequently solve using asymptotic perturbations method 
known as Krylov Bogolubov Mitropolskij techniques. Moreso, other semi-analytical technques are formulated to han-
dle frequency and displacement and the results obtained from the analysis revealed that using simple-simple end 
supports, the effect of residually stresses, viscoelastical foundation and amplitude are adequately discussed in details.  

Maria et al. (2021) considered free vibrations of tapered beams modelled nonuniformly SWCNTs, also known as nano-
cones. Furthermore, the nanocones beams is fixed in one ends and elastically restrain at other ends with concentrated 
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mass attached. Moreso, nonlinear governing equation of motion with boundary conditions and nonlocal small-scale 
effects was considered in the formulation and differential quadrature method was used to compute natural frequen-
cies, tapered ratio coefficient, smaller-scale parameters added mass on first natural frequency. Also, a numerical solu-
tion was used to verify and validate the proposed techniques with the analytical solutions and from the results ob-
tained are in goods agreement. Finally, it was concluded as follow, these methods can be applied to other types of 
ends supports.  

Mu’tasim et al. (2017) studied and investigated nonlinear free vibrational analysis and frequencies veering of SWCNTs 
based on Eringen nonlocal elasticity theories.  Furthermore, the governed nonlinear equations of motion was mod-
eled using Euler Bernoulli Beams and Hamilton’s principles, the modeled accounted for non-local elasticity, geomet-
rical initial rise/imperfections and the effects of the axially forces induce by the mid plane stretch. Moreso, this method 
of multiple-scales (MMS) was use to solve resulting nonlinear equation to acquire natural-frequencies of various 
rise/imperfection amplitude and the results are shown in dimensionless and discussed in detailed.  

Milad and Aminikhah (2010) studied nonlinear vibration analysis of MWCNT in elastic foundation using variational 
iterations method. Furthermore, the governing equations of motions was developed with multiple beams to couple 
the following, single, double, triple and multiple-walled carbon nanotube. Moreso, effects of vibrational characteristic 
of nanotubes geometric parameters are considered and the results obtained was compared with earliest literature 
findings and there are all in good agreements.  

Soltani et al. (2014) investigated nonlinear vibrational analysis of fluid-filled (SWCNT) with pinned-pinned supports. 
Furthermore, effect of smaller-scale parameters are integrated with the aid nonlocal theories, Galerkin’s decomposi-
tion method was introduced by discretizing the resulting governing of PDE into a more solvable ODE of motion there-
after, method of averaging analytical solution was applied on the ODE. The single walled carbon nanotube is pre-
sumed to be filled by water-fluid with assumed to be ideals non-compression, non-rotational and inviscid-type. Again, 
model was solved by the semi-analytical approach and the effect of nonlocal parameters was considered during sim-
ulation.  

Askari et al. (2013) carried out nonlinear dynamic analysis of SWCNTs resting on Pasternak-type medium using Euler 
Bernoulli beams and Eringen nonlocal elastic theories under pinned-pinned supports boundaries condition. Further-
more, the governing equations of motion was developed using above stated theories and Galerkin decomposition 
method is applied on the resulting nonlinear PDE of motion and ODE was obtained for the SWCNTs. Thereafter, ho-
motopic analysis method (HAM) is employed to analyzed the nonlinear natural-frequency. Again, simulation was con-
ducted on some the parameters. In conclusion, numerical parametric study was conducted to ascertained if the semi-
analytical and numerical results obtained agreed.  

Smirnov et al. (2016) presented nonlinear dynamical analysis of single walled carbon nanotube of lower energy non-
stationary. Furthermore, a newer phenomenon of intense energy-exchange between various part of carbon nano-
tubes and weaker energies localized in excited parts of carbon nanotube is analyzed and forecasted in the frame-
work of the continuum shell theories. Moreso, clarification of their origin was means of conception of Limiting-Phase-
Trajectory and the analyzed results and confirmation of molecular dynamical simulation of pinned-pinned ends sup-
port carbon nanotubes.  

Eshraghi et al. (2016) considered imperfections sensitivity of larger amplitude vibrations of curved SWCNTs. Further-
more, the carbon-nanotubes is model like Timoshenko nanobeam with curved shape for initial geometrical imper-
fections terms in displacements field. Moreso, geometrical nonlinearity of von Kármán-type and Eringen non-local 
elasticity theory are employed to derived governing partial differential equation of motions of nanobeam. Thereafter, 
spatial discretized method was applied on the obtained nonlinear PDE of governing equation of motion and its asso-
ciated ends supported conditions was conducted using differential quadrature (DQ) Again, values and location ef-
fects of the geometrical imperfections and Erigen non-local small-scale parameters on nonlinear frequency-ratio and 
imperfections sensitivities of curve single walled carbon-nanotubes for different end condition are studied and ob-
tained results depict that the geometrical imperfections played significant roles in the nonlinear vibrational charac-
teristics of curved single-walled carbon nanotube.  

Rajabi et al. (2018) examined size dependent nonlinear vibrational analysis of Euler Bernoulli nano-beams acting upon 
by a moving harmonical load travelling with variables velocities. Furthermore, pinned-pinned supported ends, the 
Galerkin discretization procedure are used to convert PDEs of motion to an ODEs. Thereafter, multistage linearization 
technique (MLT) was use to solved the resulting ordinary differential equations accordingly. Again, effect of the Er-
ingen nonlocal, material-length scale parameter, velocities, acceleration and excitations frequency of the moving har-
monical loads on the nonlinear dynamical behavior of nano-beams was studied appropriately.  

Saadatnia (2021) investigated nonlinear vibrational analysis of a curved-piezoelectric-layered CNTs resonators. Fur-
thermore, with application of energy method and Hamiltonian principle couple with Eringen nonlocal theories, non-
linear partial differential equations of motion was modeled. Thereafter, partial differential equations of motion was 
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reduced to Duffing equation after Galerkin decomposition method and multiple scales methods (MSM) of analysis 
was used to solved the resulting Duffing equation. Several resonances condition are studied including primaries and 
parametric resonance as well as frequency response are achieved with steady-state motions. Again, effect of several 
parameter like, piezoelectric thickness, apply voltage and structural curvatures on dynamic responses was studied. 
The obtained results depicted that, apply harmonic voltages to the piezoelectric layer could result to a parametric 
resonance in structural vibrations together with apply harmonic point loads to the structures could result to primary 
frequency in vibrational response. Moreso, quadratic and cubic curves of structural curvatures was also considered, it 
was finds that the wave and curved shape parameter could tune the nonlinear hardening-softening behavioral of any 
systemic and a specifically curved shape, the vibration responses to behave in similar way like that of linear systems. 
The investigation should extend towards design of curve piezoelectric nanoresonators in small-scale sensing and 
actuation system.  

Fatahi-Vajari and Azimzadeh (2020) studied nonlinear coupled radial axial vibrational analysis of SWCNTs using nu-
merical methods. Thereafter, nonlocal doublet mechanics (DM) theory was used to obtained nonlinear governing 
equations of motions and the equation of motion was solved using Homotopy perturbation method (HPM) which 
was subsequently use to determine nonlinear natural-frequencies of coupled radial-axial vibrational mode and found 
that  its cumbersome coupling two vibrational modes of a systems due to their ends conditions, different in vibration 
mode shapes and other geometrically simulation parameters are all considered in details. Also, maximum vibrational 
velocity and end conditions play important roles in single walled carbon nanotubes vibrational response though lin-
ear, nonlinear natural frequencies all depend on maximum vibrational velocity and if maximum vibrational velocity 
increase, its corresponding natural-frequency of vibrations increase compare to forecast of linear system. Moreso, 
increasing tubes length, effects of maximum vibrational velocity on natural frequencies decrease as well. In addition, 
it also depicted that, quantity and variations of nonlinear natural-frequencies are evident in highly vibrational mode 
and two fixed end condition. Conclusively, results obtained in this studied are compared to order four Runge-Kuta 
numerical solutions and others result in literatures and there are all in accurate agreement as the results and can be 
compared with future investigation.  

Shaba et al. (2021) studied nonlinear vibrational analysis of single-walled carbon nanotubes (SWCNTs) with the aid of 
longitudinal magnetic-field under Euler Bernoulli Beams and Eringen’s non-local elasticity theories. Moreso, one pa-
rameter FEM together with Newmark time integration method was adopted to analyzed effects of nonlocal parame-
ters of small-scale length, fluid velocity and magnetic fields permeability/strength on the deflections of the SWCNTs. 
Furthermore, MATLAB was adopted for parametric study of the parameters to obtained dynamic response of the 
systems under investigation and the results obtained shown that fluid velocity parameters affected mostly than the 
deflection of CNTs, nonlocal parameters and magnetic field permeability/strength.  

A. Ghorbanpour Arani et al (2015) investigated flexural vibrational stability analysis of coupled double-walled visco-
elastic carbon nanotubes conveying fluid under Timoshenko beams (TB) model theory and the couple system is rest-
ing under spring medium and Pasternak type-foundation. Moreso, Lenard-Jones model uses van der Waals (vdW) 
force between the inner-outer DWCNTs was considered. Furthermore, Hamilton’s principle, small scale theories and 
application of 2D magnetic fields of higher order nonlinear governing equation of motions is obtained and the ana-
lytical solution of differential quadrature (DQ) was apply on the nonlinear PDEs of motions to obtained dynamic re-
sponse of the system under study. Finally, effects of visco-elastic, magnetic fields with variable magnitude and surface 
stress on natural frequencies of the structures are confirmed under the investigation.  

Ebrahimi and Nasirzadeh (2015) presented dynamic vibration analysis of single-walled carbon nanotube (SWCNT) 
under the following boundary conditions; simply, clamped and free. Furthermore, through variationally formulation 
and Hamilton's principle couple with Eringen’s nonlocal elasticity and Timoshenko beams theories, the nonlinear 
governing partial differential equation of motions was developed. Moreso, the developed nonlinear governing equa-
tion was solve by partial differential transform method (DTM) to obtained dynamical responses of the systems and 
the obtain results was compared with other well-known methods and there are in good accuracy. Also, effects of 
simulation of transverse shear-deformation effect, slenderness ratio, boundary conditions and small-scale vibrational 
characteristic of single-walled carbon nanotubes was investigated respectively. Conclusively, the investigation re-
vealed that, vibrational characteristic of single walled carbon nanotubes are believed to rely on nonlocal small-scale 
parameters as seen during the study.  

M.M.S. Fakhrabadi et al. (2015) investigated effects of applying of nonlocal elasticity theories on electro-mechanical 
behavior of single-walled carbon nanotube (SWCNTs) under electrostatically actuations. Furthermore, influence of 
several dimension and ends condition on vibrational and dynamical instabilities analysis of single-walled carbon 
nanotube is considered. The obtained results revealed that applying nonlocal elasticity theory led to the higher pull-
in voltage for the non-local models used for the single-walled carbon nanotube. Moreso, to achieved good agreeable 
result, application of non-classical theory such as non-local elasticity theories to examine mechanic and electro-me-
chanical behaviors of the nanostructures.  
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Zahra et al. (2021) analyzed nonlinear couple torsional radial vibrational analysis of SWCNTs with doublet mechanics 
(DM) principles to obtained two PDEs of governing nonlinear couple torsional radial vibrational for such CNTs. Fur-
thermore, these PDEs of motions is reduced to more convenient duffing equation with the assistance of Galerkin 
decomposition method. Subsequently, the resulting duffing equation is solve using a semi-analytical approach of 
homotopic perturbation method (HPM) to obtained dynamic response such as complicated frequencies but due to 
coupling of the two vibrational modes. Again, dependent of end conditions, vibrational mode and carbon nanotube 
geometry on nonlinear couple torsional-radial vibrational characteristic of single walled carbon nanotube is consid-
ered. Also, ends support condition and maximum vibrational velocities have important effects on the nonlinear cou-
pled torsional radial vibrational responses of SWCNTs. Subsequently, linear model, maximum vibrational velocity in-
creases with corresponding increases in natural-frequencies of vibration. The obtained results was compared with 
fourth order Runge-Kuta numerical solutions and there are in accuracy agreement as the new obtain results can be 
use as benched mark for future investigations.  

Xu et al. (2018) developed nonlinear model of single-walled carbon nanotube (SWCNTs) and study nonlinear dynam-
ical characteristic of such single-walled carbon nanotubes which is subjected to random magnetic fields permeabil-
ity/strength. Furthermore, Eringen’s differential constitutive model considered effects of non-local microstructure 
and energy function method (EFM) is used to obtained the nonlinear dynamical response like natural frequency. Also, 
the drift and diffusion coefficients are authentic. Subsequently, semi-analytical solutions and numerical parametric 
investigation depicted that stochastical resonance happened when vary random magnetic fields intensities. Again, 
boundaries of safe basins have fractal characteristics and decreasing the areas of safe basins increasing corresponding 
intensities of the magnetic fields permeabilities. 

2. FORMULATION OF GOVERNING EQUATION OF MOTION 

In order to modelled nonlinear governing equations of motions for slightly curved single-walled carbon nanotubes, 
the slightly curved SWCNTs under the influence of stretching effect and resting on Winkler-Pasternak foundations in 
a magneto-thermal environment is shown in Fig. 1. With the aid of the following; Eringen’s nonlocal elasticity theory, 
Euler-Bernoulli beam theory and Hamilton’s principle.  

 

Figure 1: Slightly curved embedded CNTs on elastic foundation with different boundary conditions. 

The nonlinear governing equation of motion for the CNTs as is developed as: 
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Fc is the Casimir intermolecular force per unit length 
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Substituting equations (2) and (3) into equation (1), the nonlinear dynamical behaviour of the electrostatic actuated 
carbon nanotubes under the impacts of Casimir forces becomes:  
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 −   −    = + + +     − −   +
 − 

 (4) 

3
1 3wk w k w k w= + , where, w(x,t) is the bending deflection of the tube, t is the time coordinate, EI is the bending rigid-

ity, m, is the mass of tube per unit length and Zo is the initial curvature of the tube. xEA Tα  denotes the constant axial 
force due to thermal effects where, A is the cross-sectional area of the tube, xα  is the coefficient of thermal expansivity 

and T is the change in temperature. 2
xAHη  is the magnetic force per unit length due to Lorentz force exerted on the 

tube in z-direction and, the term η is the magnetic field permeability and Hx is the magnetic field strength. 

However, this study presents the analysis and dynamical response of a SWCNTs subjected to displacements boundary 
conditions as shown below: 

For Pinned-Pinned supported (P-P) nanotube, 

 
2 2

2 2

(0, ) ( , ))
(0, ) 0, 0, ( , ) 0, 0

w t w L t
w t w L t

x x
∂ ∂= = = =

∂ ∂
 (5)

 
 For Fixed-Fixed supported (F-F) nanotube, 

 
(0, ) ( , )

(0, ) 0, 0, (( , ) 0, 0
w t w L t

w t w L t
x x

∂ ∂= = = =
∂ ∂

 (6)
 

For a Fixed-Pinned supported (F-P) nanotube, 

 
2

2

(0, ) (( , )
(0, ) 0, 0, ( , ) 0, 0

w t w L t
w t w L t

x x
∂ ∂= = = =

∂ ∂
 (7)

 
Table 1:  The basic functions corresponding to the above boundary conditions 

Cases Mode shape, φ(x) Value of β 

1. Simply support                             
x

sin
L

β 
 
 

 π 

 
2. Clamped-Clamped support  

sinh sin
cosh cos sinh sin

cosh cos
x x x x

L L L L
β β β β β β

β β
    +       − − −           −             

4.730041 

 
3. Clamped-Simply support 

cosh cos
cosh cos sinh sin

sinh sin
x x x x

L L L L
β β β β β β

β β
    −       − − −           −           

 3.926602 
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2.1. Converting the governing equation from pde into ode using galerkin decomposition method  

For convenience, equation (4) is rearranged into dimensionless form using some dimensionless parameters. These 
dimensionless variables are: 

 
( ) ( )

4 2 2
1

1 2
0

2 2
22 04 4 4 2 4

0
3 44 3 5 4

0 0 0 0 0 0

24 2 22 4
3 0 0

6 3 17
0 2

, , , ,
12

3
,

6 240

16
, , , ,

20

x

p
p

k L AH Lx w h E
X W K t H

L d EI L EI

Ab
e a b V

bf V e aL AbL L hcbL
EId EI d d EId EId d

k Lk L d d EAhcbL
K K

EId EI h EI

ητ
ρ

εε π πλ λ
π

πλ α θ

= = = = =

  +       = + = +
      

 

= = = = =
2

xTL
EI

α

 (8) 

Substituting Eq. (8) into (4), the dimensionless equation of motion becomes as illustrated in Eq. (9) below: 

 

( )

( )

21 24 2 2 2
3

1 3 14 2 2 2 2
0

24 2 2
2

2 1 3 32 2 2 2

21
2

1
0

6 3

o o
p

o
o

Z ZW W W W W W
K W K W dX H K

X X X X X X X

W W W W
K K W K W

X X X X

Z W W
e a dX

X X X

α θ
τ

α
τ

α

    ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ + + + −  +  + − + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂ + − +    ∂ ∂ ∂  





( )

( ) ( ) ( ) ( ) ( )
4 4

3 61 2 4
2 3 4 64 4

4

4

1 1 1 1 1
o

p

Z W
X X W W W W W

W
H K

W

λ λλ λ λ

θ

 
 
 
  ∂ ∂  + = + + + +   ∂ ∂ − − − − −  
 ∂− + + 
 ∂ 

(9) 

By expansion, 

 ( ) ( )( )2 3 4 5 6 7
1 11 1 W W W W W O WW Wλ λ +− + += + + + +  (10) 

 ( ) ( )( )2 3 4 5 6 72
2 2 1 2 3 4 71 5 6W WW W W W W O Wλ λ + + +− + += + +  (11) 

 ( ) ( )( )2 3 4 5 6 73
3 3 1 3 6 10 1 21 281 5W W W W W W WW Oλ λ + + + +− += + +  (12) 

 ( ) ( )( )4
2 3 4 5 6 74

4 1 4 10 20 3 56 841 5W W W W W W WW Oλ λ + + + +− += + +   (13) 

 ( ) ( )( )2 3 4 5 6 76
6 6 1 6 21 561 126 252 462W W WW W W W O Wλ λ= + + + + +− + +  (14)  

Substituting Eq. (10) to (14) into Eq. (9) and grouping like terms, we have: 

 

( )

( )

21 24 2 2 2
3

1 3 14 2 2 2 2
0

24 2 2
2

2 1 3 32 2 2 2

21
2

1
0

6 3

o o
p

o
o

Z ZW W W W W W
K W K W dX H K

X X X X X X X

W W W W
K K W K W

X X X X

Z W W
e a dX

X X X

α θ
τ

α
τ

α

    ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ + + + −  +  + − + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂ + − +    ∂ ∂ ∂  





( )

( ) ( )

( ) ( )
( )

4 4

4 4

4

4

1 2 3 2
1 2 3 4 6 1 2 3 4 6

4 6

3 4
1 2 3 4 6 1 2 3 4 6

5
1 2 3 4 6 1

3 6
2 3 4 6

10 21

4 10 20 56 5 15 35 126

6 21 56 252

o

p

Z W
X X

W
H K

W

W W

W W

W

θ

λ λ λ
λ λ λ λ λ λ λ λ λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ

 
 
 
  ∂ ∂  +   ∂ ∂  
 ∂− + +  ∂ 

+ + 
+ + + + + + + + + +  + + 

= + + + + + + + + + +

+ + + + + + ( ) 6
2 3 4 67 28 84 462 Wλ λ λ λ

 
 
 
 
 
 + + + +
  
    
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To convert Eq. (15) into Ordinary Differential Equation, the Galerkin decomposition method is employed. This proce-
dure allows the deflection of the SWCNTs to be represented as a product of two independent functions as shown; 

 ( ) ( ) ( ),W X U Xτ τ φ=   (16) 

Where φ(x) as expressed in table 3.1, is a function selected to satisfy the boundary conditions. Recall that the Galerkin 
one parameter at a time transform is defined as; 

 ( ) ( )
1

0

,R X X dXτ φ  (17) 

Where ( ),R X τ is the nonlinear equation. Applying Eq. (17) to the governing equations, the decomposition equation 

becomes; 

 

( ) ( )

21 24 2 2
3

1 3 14 2 2 2
0

24 2 2
2

2 1 3 32 2 2 2

212
2

12
0

6 3

o o

o
p o

Z ZW W W W W
K W K W dX

X X XX X X

W W W W
K K W K W

XX X X

ZW W W
H K e a dX

X X XX

α
τ

α
τ

θ α

    ∂ ∂∂ ∂ ∂ ∂ ∂  + + + − + +      ∂ ∂ ∂∂ ∂ ∂ ∂     

 ∂ ∂ ∂ ∂ + + +   ∂∂ ∂ ∂ ∂   
  ∂∂ ∂ ∂ − + + + − +    ∂ ∂ ∂∂   





( )

( ) ( )

( ) ( )
( )

4 4

4 4

4

4

1 2 3 2
1 2 3 4 6 1 2 3 4 6

4 6

3 4
1 2 3 4 6 1 2 3 4 6

5
1 2 3 4 6 1

3 6
2 3 4 6

10 21

4 10 20 56 5 15 35 126

6 21 56 252

o

p

Z W
X X

W
H K

W

W W

W W

W

θ

λ λ λ
λ λ λ λ λ λ λ λ λ λ

λ λ
λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ

 
 
 
  ∂ ∂  +   ∂ ∂  
 ∂ − + +
 ∂ 

+ + 
+ + + + + + + + + +  + + 

= + + + + + + + + + +

+ + + + + + ( )

( )
1

0

6
2 3 4 67 28 84 462

X dX

W

φ

λ λ λ λ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  + + + +
     

 
 

  (18) 

Performing the integration and grouping using the temporal term as coefficient, the Duffing equation for the SWCNT 
becomes: 

 
6

0

0MU GU C Uζ
ζ

ζ =

+ + =   (19) 

Which in expanded for gives; 

 2 3 4 5 6
0 1 2 3 4 5 6 0MU GU C C U C U C U C U C U C U+ + + + + + + + =   (20) 

Subject to , 0U a U= =  

Where, 

( ) ( ) ( )
2

1

2 20

d X
M X X dX

X

φ
φ α φ
 

= + ∂  
  

[ ] ( )1

0 1 2 3 4 60
C X dXλ λ λ λ λ φ= − + + + +  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

4 2 2

1 14 2 2

2 4 4
1 2

1 1 12 4 40

1 2 3 4 62 3 4 6

p

o p

d X d X d X
K X N H K

dX dX dX

d X d X d X
C e a K N H K X dX

dX dX dX

φ φ φ
φ α θ

φ φ φ
α θ φ

λ λ λ λ λ

  
+ − − + +     

 
   = + − − + +        

 − + + + +
 
  

  

[ ] ( )1

2 1 2 3 4 60
3 6 10 21C X dXλ λ λ λ λ φ= − + + + +  



Engineering Today Vol. 3 • (2024) • No. 1 

 26 E. H. Abubakar et al. 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

2 2
2 23

1 3 3 3 2
3 0

1 2 3 4 6

6 3

4 10 20 56

o

d X d X
K X e a K X K X

dX dXC X dX

φ φ
φ φ φ

φ

λ λ λ λ λ

      + +       =      
 − + + + + 

  

[ ] ( )1 5
4 1 2 3 4 60

5 15 35 126C X dXλ λ λ λ λ φ= − + + + +  

[ ] ( )1 6
5 1 2 3 4 60

6 21 56 252C X dXλ λ λ λ λ φ= − + + + +  

[ ] ( )1 7
6 1 2 3 4 60

7 28 84 462C X dXλ λ λ λ λ φ= − + + + +  

0G =   

3. SOLUTION METHODOLOGY 

The homotopy perturbation method was introduced by Ji Huan HE in 1998. This method become more popular and 
acceptability as an elegant tool in the hand of researchers due to its simplicity in nature and give rises to highly effec-
tive solution of complicated nonlinear problems in sevral diverse areas of science and technological based 
knowledge. The technique was based on homotopic, which is the significant part of topology. Interesting property 
of homotopy, is that one can transformed any nonlinear problems into an infinite number of linear problems, no 
matter whether or not there exists a smaller or larger parameter. To illustrate this general procedure, let us consider 
a general nonlinear partial differential equation of the form; 

In this section we have illustrated the basic ideas behind HPM is to solve nonlinear equations. Let us considered the 
following nonlinear differential equations of the form; 

 ( ) ( ) 0,u f r rΑ − = ∈ Ω   (21) 

Subject to boundary condition: 

 , 0,
u

u r
n

∂ Β = ∈Γ ∂ 
 (22) 

where A is a general differential operator, B a boundary operator, f(r) a known analytical function and Γ is the bound-
ary of the domain Ω. In general, one can divide the operator A into two parts: linear and non-linear. That means 

 A=L+N  (23) 

where L is linear and N is non-linear. 

Hence, equation (21) can now be rewritten as 

 ( ) ( ) ( ) 0,L u u f r r+ Ν − = ∈Ω   (24) 

By the homotopy technique, one can construct a homotopy in the following way [ ]( , ) : 0,1v r p x RΩ → which satisfies  

 [ ] [ ]0( , ) (1 ) ( ) ( ) ( ) ( ) 0,v p p L v L u p v f rΗ = − − + Α − =     [ ]0,1 ,p r∈ ∈Ω   (25) 

or  [ ]0( , ) ( ) ( ) ( ) ( ) 0v p L v L u p v f rΗ = − + Ν − =  (26) 

where [0,1]p ∈ is an embedding parameter, 0u  is an initial approximation which satisfies the boundary conditions.  

 0( ,0) ( ) ( ) 0H v L v L u= − =   (27) 

 ( ,1) ( ) ( ) 0H v v f r= Α − =   (28) 

The changing process of p from zero to unity is just that of v(r,p) from u0(r) to u(r). In topology, this is called deformation 
and L(v)-L(u0) and A(v)-f(r) are called homotopy. According to the HPM, we can first use the embedding parameter p 
as a "small parameter" and assume that the solution be written as a power series in p 

 2
1 2 ...ov v pv p v= + + +   (29) 

Setting p = 1 result in the approximate solution: 

 1 0 1 2lim ...pu v v v v→= = + + +   (30) 
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The combination of the perturbation and homotopy methods are called the homotopy perturbation method (HPM), 
which has eliminated the limitations of the traditional perturbation methods. On the other hand, this method has full 
merit of the traditional perturbation method.  

Applying Homotopy Perturbation Method on Duffing Equation 

 2 3 4 5 6
0 1 2 3 4 5 6 0U C C U C U C U C U C U C UΜ + + + + + + + =  (31) 

Divide through by M 

 2 3 4 5 60 3 5 61 2 4 0
C C C CC C C

U U U U U U U+ + + + + + + =
Μ Μ Μ Μ Μ Μ Μ

  (32) 

 Let, 0 3 5 61 2 4
0 1 2 3 4 5 6, , , , , , ,

C C C CC C Cβ β β β β β β= = = = = = =
Μ Μ Μ Μ Μ Μ Μ

 (33) 

Substitute equation (33) into equation (32) gives; 

 2 3 4 5 6
0 1 2 3 4 5 6 0U U U U U U Uβ β β β β β β+ + + + + + + =  (34) 

Apply, HPM on equation (34) becomes: 

 [ ]2 3 4 5 6
1 0 1 2 3 4 5 6( , ) (1 ) 0, 0,1 ,v p p U U p U U U U U U U p rβ β β β β β β β   Η = − + + + + + + + + + = ∈ ∈Ω   

   (35) 

Perturbating the parameters become (36) & (37) are obtain as follows; 

 

" " 2 "
0 1 2

' ' 2 '
0 1 2

2
0 1 2

...

...

...

U U pU p U

U U pU p U

U U pU p U

= + + +


= + + + 
= + + + 


  (36) 

And  

 2 2 2 2
1 0 1 2 ...p pβ ω ω ω= + + +  (37) 

Substitute equation (36) & (37) into equation (35) 

 

( ) ( )( )
( )( )

( ) ( )
( ) ( )

" " 2 " 2 2 2 2 2
0 1 2 0 1 2 0 1 2

" " 2 " 2 2 2 2 2
0 1 2 0 1 2 0 1 2

2 32 2
2 0 1 2 3 0 1 2

4 52 2
4 0 1 2 5 0 1 2

6 0 1

1 ... ... ...

... ... ...

... ...

... ...

p U pU p U p p U pU p U

U pU p U p p U pU p U

U pU p U U pU p U
p

U pU p U U pU p U

U pU p

ω ω ω

ω ω ω

β β

β β

β

 − + + + + + + + + + + + 

+ + + + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ +( )62
2 0

0

...U β

 
 
 
  = 
 
 

+ +  

 (38) 

Expanding equation (38) and collecting all terms with the same order of p together, the following  

resulting equations appears in form of polynomial in power of p are obtain. Where, iu and 2
iω ,  0,1,2,...i =  and 

equated same to zero as shown below; 

 0 " 2
0 0 0: 0U UωΡ + = boundaryconditionas 0 (0)U = Α and 0(0) 0U =  (39) 

 1 " 2 2 2 3 4 5 6
1 0 1 1 0 2 0 2 0 2 0 2 0 2 0 0: 0U U U U U U U Uω ω β β β β β βΡ + + + + + + + + =  

Boundary condition: 1(0) 0U = and 1(0) 0U =  (40) 
Using initial conditions in equation (40) which give the solution as; 

 0 0cosU A tω=  (41) 

Substituting the value of equation (41) into equation (34) yields; 

 
( )" 2 2 2 3

1 0 1 1 0 2 0 3 0

4 5 6
4 0 5 0 6 0 0

cos ( cos ) ( cos )
0

( cos ) ( cos ) ( cos )

U U A t A t A t

A t A t A t

ω ω ω β ω β ω
β ω β ω β ω β

 + + + + +
=  + + + 

 (42) 
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Performing trigonometric identities function on equation (41) gives; 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

32 2
2 2 32 2

0 11

3 4 4
3 4 4

55 54
55 54

66 6 6
66 6 6

0

cos cos 2 cos 3
2 4

3
cos cos 4 cos 2

4 8 2
5 cos 3 5

cos 5 cos
16 16 8

15 cos 23 5
cos 6 cos 4 0

32 16 3 6

2

1

3

2

8

AA A
U t U t A t t t

A A A
t t t

A tA AA
t t

A tA A A
t t

ββ βω ω ω ω ω

β β βω ω ω

β ωβ ββ ω ω

β ωβ β βω ω β













+ + + + + +

+ + +

+ + + +

+ + +


+ =

 












 (43) 

Neglecting secular terms, equation (43) becomes; 
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And Nonlinear frequency 1ω  is obtain as  
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 (45) 

For the Model Stability Analysis 

From equation (37), setting  p =1, 2 2
1 0 1 ... 0β ω ω= + + =   (46)  

Substitute  2
1ω into equation (46), gives: 
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Natural frequency is obtained as; 
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Therefore, frequency ratio is obtained as; 
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Solving equation (42) and neglecting secular terms with the boundary conditions  
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Obtaining the series solutions as follows; 

 0 1( ) ( ) ( ) ...u t u t u t= + +  (52) 
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 (54) 

Deflection is obtained for different carbon nanotubes ends conditions; 

 ( , ) ( ) ( )w x t u t xφ= ∗  (55) 

For Simple-Simple supports 
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For Clamped-Clamped supports 
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For Clamped-Simple supports 
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Figure 1, 2, and 3 shows, first-fifth normalized mode shapes of the beam for the nanotubes with pinned-pinned, fixed-
fixed and fixed-pinned supports. These figures depict the deflections of the beams along the beams’ span at five 
different buckled mode shapes. The natural frequencies show where the maximum vibration occurs. The mode 
shapes show the deformation that the component would show when vibrating at the natural frequency. This mean 
that the mode shapes tell us how the structure tends to deform at the specific natural frequencies. Therefore, such 
analyses of the mode shapes and natural frequencies are very significant as they reveal the important property of the 
mechanical system and the system frequencies that is vulnerable or susceptible to vibration. They also depict when 
the natural frequencies coincide with the resonant frequencies of the system. 

  

Figure 1: First-fifth normalized mode shapes of the 
beam for the nanotubes with pinned-pinned supports 

Figure 2: First-fifth normalized mode shapes of the 
beam for the nanotubes with fixed-fixed supports 

  

Figure 3: First-fifth normalized mode shapes of the 
beam for the nanotubes with fixed-pinned supports 

Figure 4: Effects of magnetic term on dimensionless 
amplitude-frequency ratio on simple-simple support 
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Figure 4, 5 and 6 shown impacts of magnetic term on dimensionless amplitude-frequency ratio curve of stability anal-
ysis of single-walled carbon nanotube structure in magneto-thermal electrostatic environment under the influence 
of Casimir force on two elastic foundations. Figure 4 depicted that as magnetic term increases from zero to maximum, 
frequency-ratio decreases toward linear system. This shows that for SWCNTs structure to gain stability, magnetic term 
must be kept at maximum meanwhile, Figure 5 and 6 depicted that as magnetic term increases from zero to maxi-
mum, frequency-ratio decreases until there converged at a specific amplitude and thereafter, the magnetic term start 
increases again from the convergence point to maximum as frequency-ratio decrease toward linear system. These 
show that for SWCNTs structure to gain stability, magnetic term must be kept at both minimum and maximum under 
the influence of Casimir effect for both clamped-clamped and clamped-simple supports. 

  

Figure 5: Effects of magnetic term on dimensionless am-
plitude-frequency ratio on clamped-clamped supports 

Figure 6: Effects of magnetic term on dimensionless 
amplitude-frequency ratio on clamped-simple support 

Figure 7, 8 and 9 shown impacts of thermal term on dimensionless amplitude-frequency ratio curve of stability anal-
ysis of single-walled carbon nanotube structure in magneto-thermal electrostatic environment under the influence 
of Casimir force on two elastic foundations. Figure 7 depicted that as magnetic term increases from zero to maximum, 
frequency-ratio decreases toward linear system. This shows that for SWCNTs structure to gain stability, thermal term 
must be kept at maximum meanwhile, figure 8 and 9 depicted that as thermal term increases from zero to maximum, 
frequency-ratio decreases until there converged at a specific amplitude and thereafter, the thermal term start increase 
again from the convergence point to maximum as frequency-ratio decrease toward linear system. These show that 
for SWCNTs structure to gain stability, thermal term must be kept at both minimum and maximum under the influ-
ence of Casimir effect for both clamped-clamped and clamped-simple supports. 

  

Figure 7: Effects of thermal term on dimensionless am-
plitude-frequency ratio on simple-simple support 

Figure 8: Effects of magnetic term on dimensionless am-
plitude-frequency ratio on clamped-clamped support 
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ment under the influence of Casimir force on two elastic foundations. Figure 10 depicted that as linear Winkler-type 
elastic foundation increases from zero to maximum, frequency-ratio decreases toward linear system. This shows that 
for SWCNTs structure to gain stability, linear Winkler-type elastic foundation must be kept at maximum meanwhile, 
Figure 11 and 12 depicted that as linear Winkler-type elastic foundation increases from zero to maximum, frequency-
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foundation start increase again from the convergence point to maximum as frequency-ratio decrease toward linear 
system. These show that for SWCNTs structure to gain stability, linear Winkler-type elastic foundation must be kept 
at both minimum and maximum under the influence of Casimir effect for both clamped-clamped and clamped-sim-
ple supports. 

  

Figure 9: Effects of magnetic term on dimensionless  
amplitude-frequency ratio on clamped-simple support 

Figure 10: Effects of linear Winkler-type elastic  
foundation on dimensionless amplitude-frequency  

ratio on simple-simple support 

  

Figure 11: Effects of linear Winkler-type elastic  
foundation on dimensionless amplitude-frequency  

ratio on clamped-clamped support 

Figure 12: Effects of linear Winkler-type elastic  
foundation on dimensionless amplitude-frequency 

 ratio on clamped-simple support 

Figure 13, 14 and 15 shown impacts of Pasternak elastic foundation on dimensionless amplitude-frequency ratio 
curve of stability analysis of single-walled carbon nanotube structure in magneto-thermal electrostatic environment 
under the influence of Casimir force on two elastic foundations. Figure 13 depicted that as Pasternak elastic founda-
tion increases from zero to maximum, frequency-ratio decreases toward linear system. 

  

Figure 13: Effects of Pasternak elastic foundation  
on dimensionless amplitude-frequency ratio  

on simple-simple support 

Figure 14: Effects of Pasternak elastic foundation  
on dimensionless amplitude-frequency ratio  

on clamped-clamped support 
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This shows that for SWCNTs structure to gain stability, Pasternak elastic foundation must be kept at maximum mean-
while, Fig.14 and 15 depicted that as Pasternak elastic foundation increases from zero to maximum, frequency-ratio 
decreases until there converged at a specific amplitude and thereafter, the Pasternak elastic foundation start increase 
again from the convergence point to maximum as frequency-ratio decrease toward linear system. These show that 
for SWCNTs structure to gain stability, Pasternak elastic foundation must be kept at both minimum and maximum 
under the influence of Casimir effect for both clamped-clamped and clamped-simple supports. 

  

Figure 15: Effects of Pasternak elastic foundation  
on dimensionless amplitude-frequency ratio  

on clamped-simple support 

Figure 16: Effects of nonlinear Winkler-type elastic 
foundation on dimensionless amplitude-frequency  

ratio on simple-simple support 

Figure 16, 17 and 18 depicted that as nonlinear Winkler-type elastic foundation increases from zero to maximum, 
frequency-ratio decreases toward linear system. This shows that for SWCNTs structure to gain stability, nonlinear Win-
kler-type elastic foundation must be kept at maximum. 

  

Figure 17: Effects of nonlinear Winkler-type elastic 
foundation on dimensionless amplitude-frequency  

ratio on clamped-clamped support 

Figure 18: Effects of nonlinear Winkler-type elastic 
foundation on dimensionless amplitude-frequency 

 ratio on clamped-simple support 

 

Figure 19: Effects of different boundary conditions  
on dimensionless amplitude-frequency ratio  

Figure 19 shown impacts of different boundary condi-
tions on dimensionless amplitude-frequency ratio curve 
of stability analysis of single-walled carbon nanotube 
structure in magneto-thermal electrostatic environ-
ment under the influence of Casimir force on two elastic 
foundations. Figure 19 depicted that clamped-simple 
supports has highest frequency ratio after experienced 
sudden decreases and merged with clamped-clamped 
until amplitude of 0.4nm before divergence. The 
clamped-clamped supports have a lowest frequency ra-
tio. Therefore, this reveal that in selecting elastic foun-
dation type, clamped-clamped support exhibit best 
foundation type with lowest frequency ratio and can be 
used to control stability of any foundation. 
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Figure 20 and 21 shown influence of Casimir force and Electrostatic force on time-deflection curve of single-walled 
carbon nanotube structure in magneto-thermal-electrostatic environment under the influence of Casimir force on 
two elastic foundations. The two-force concentrated at the compression zone as way of improving serviceability, long 
term deflections and to provide support for stirrups throughout the beam.   

  

Figure 20: Effects of Casimir force on  
dimensionless Time-Deflection curve 

Figure 21: Effects of Electrostatic force  
on dimensionless Time-Deflection curve 

4. CONCLUSION 

The discovery of carbon nanotube structure has renewed a major chapter in the field of mechanics, physics, chemistry 
and materials science owing to their high-quality possession of; excellent tensile strength, high conductivity, high 
aspect ratio, thermally and high chemical stabilities etc. In this study, dynamic and instability analysis of single-walled 
carbon nanotubes with geometrical imperfection resting on elastic medium in a magneto-thermal-electrostatic en-
vironment with impact of Casimir force. The nonlinear mathematical model is derived with the aid of Eringen nonlocal 
theory and Hamilton principle. The resulting partial differential equation of motion is converted to duffing equation 
using Galerkin decomposition method. Subsequently, the duffing equation is solved using homotopic perturbation 
method (HPM). The results obtained from the simulation shows that, the results obtain depicted that, the effects of 
magnet term, thermal and Pasternak type foundation on dimensionless amplitude-frequency ratio for clamped-
clamped and clamped-simply supports make the investigation novelty as it can be used as reference in future. 
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