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Abstract: The digitization of distribution networks enables the collection of big data from which 
it is necessary to draw conclusions and detect anomalies among electricity consumers. This 
paper explains methodologies to detect non-technical losses, commercial losses, and electricity 
theft. Based on monthly electricity consumption measurements, possible and prevalent cases of 
anomalies and theft among consumers are identified. Indicators that can detect anomalies have 
been proposed for such types of load diagrams. The sensitivity of the indicators to different 
types of consumers was analyzed. The applicability of this methodology was examined for a 
set of real measurements, and its advantages were pointed out. This concept represents a good 
recommendation, as it is possible to observe and detect irregularities in electricity consumption.
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INTRODUCTION

The goal of every energy system is the safe transmission and distribution of energy with 
minimal losses. Losses in the distribution electricity network can be divided into technical 
and non-technical losses. Technical losses are calculated using well-known methods, while 
non-technical losses can’t be easily and clearly detected and evaluated. Non-technical 
or commercial losses are the result of measurement inaccuracy, incomplete readings 
of metering devices, non-simultaneous readings, improper control of metering points, 
irregular meter calibration, untimely detection of unauthorized consumption, insufficient 
technical equipment of teams to work on customer control, insufficient training of readers 
and controllers of metering devices, insufficient support and assistance (of the law) after 
the detection of unauthorized consumption, unauthorized use of electricity on various 
grounds of unregistered consumption (electricity theft from existing customers and “wild” 
connections of new customers), error in the operation of measuring devices (delay in 
balancing customers’ meters, malfunctions of meters and measuring transformers), and 
error in the reading and calculation of electricity. [1]
The review papers [2–5] presented the possibilities of applying a large number of 
measurements at Distribution System Operators (DSO) and smart grid in order to detect 
non-technical losses, commercial losses, and electricity theft. Reference [6] presents an 
intelligent energy meter that provides solution for maintaining power quality, provides 
superior metering and billing system, and also controls power theft. The research paper 
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[7] presents prevention of power theft in distribution system using smart hardware device. 
Three latest gradient boosting classifiers are used for smart grid energy theft identification 
in the paper [8]. A data analytic approach with false data injection is present in paper [9]. 
An IoT solution for electricity theft prevention is presented in [10]. Two methodologies 
based on artificial intelligence present stacked sparse denoising autoencoder [11] and 
support vector machine [12] for electricity theft detection.
The detection of non-technical losses, commercial losses, and electricity theft is not de-
fined by international standards or internal standards and recommendations of the DSO. 
In all DSOs within the framework of Industry 4.0, mass digitization is launched, and as 
many data as possible is collected. In research papers, possible methods of detection and 
examples of detection of energy losses and electricity theft are presented. However, a com-
prehensive method and a clear algorithm for detection have not been defined.
This paper provides explanations related to the measurement of electricity consumption. 
The main load diagrams, energy consumption, as well as main parameters are explained, 
and multi-day load charts are analyzed. Based on that, the parameters that are important 
for the detection of anomalies in electricity consumption were observed: coefficient of 
variation, ratio between peak and valley load, load rate, valley coefficient, daily load vari-
ance, and equivalent time. The mentioned parameters are calculated for a normal energy 
consumption state and states with different types of anomalies: peak random anomaly, 
on-off anomaly, time random anomaly, and anomaly of decreasing peak. For these types 
of anomalies, the parameter bounding values are calculated. The algorithm is proposed to 
detect anomalies based on the analysis of the given parameters.
The paper is organized as follows. Section 2 presents the concept of smart grid and smart 
meters. In section 3, a load diagram is presented and an overview of the most significant 
parameters is given. Section 4 shows the results of electricity measurement for consumers 
where there are no anomalies and for specific consumers where there are special cases of 
anomalies. Section 5 provides the algorithm for detection and threshold values for param-
eters with results. Conclusions of the research are derived in Section 6.

SMART GRID AND SMART METERS

A smart grid is a power grid that uses analog and digital information and communication 
technologies in order to increase the reliability of electricity supply. One of the main 
components of the smart grid is definitely the communication network and accompanying 
sensors and measuring devices. Two-way communication between a utility and its 
consumers is a prerequisite for the smart grid. This communication enables advanced 
metering and control options, and it is known as the Advanced Metering Infrastructure 
(AMI). In addition to AMI, data management is very important. Namely, when big data 
is collected, it has to be properly stored and utilized. Data can be used for many purposes, 
and detection of electricity theft (non-technical losses) is one of them. Currently, AMI 
provides physical and wireless connections, bidirectional metering and billing, data 
storage and management, detection and diagnostics of system faults, and end-to-end 
communication.
Some of the most important goals of AMI implementation are: 
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Figure 1. Architecture of AMI.

• Reduction of meter reading expenses;
• Increasing the accuracy of measurements;
• Expediting billing;
• Enabling centralized control of customers;
• Reducing non-technical losses; and
• Increasing network reliability.

The main parts of AMI are smart meters, data concentrators, and data management cen-
ters. Figure 1 shows the simple architecture of the AMI system. 

POWER LOAD DIAGRAM AND INDICATORS

The daily load diagram presents dependence between power and time. Talking about time, 
load diagrams appear as daily, weekly, monthly, and yearly charts. The basis of all these 
diagrams is the daily load diagram, whose shape depends on several factors: the nature 
of the consumer area, the share of individual consumers in a certain consumer group 
area, the season (summer, winter), and other factors [1]. The daily load diagram can be 
estimated as the average measured value within 15, 30, or 60 minutes. It is characterized 
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by three basic indicators: maximum daily load (Pmax [kW]), minimum daily load (Pmin 
[kW]), and total daily consumed energy (W [kWh]). Other characteristic indicators are 
defined from the basic indicators:

(1)

(2)

(3)

(4)

where Pmean is the daily mean load, m is the daily load factor , T is the maximum power 
utilization time, and n is the ratio of daily minimum and maximum.
Measurement data was taken from more than a thousand smart meters in a part of a 
distribution network that comprises mostly households. According to the collected data, 
seven-day hourly diagrams are given in Fig. 2.

Figure 2. Weakly load diagrams.

For the sampled data, the highest daily maximum load for consumption at the sample 
level is 2027.64 kW (point 1), and the lowest daily maximum is 1474.89 kW, with a relative 
ratio of 0.73. The mean power value at the sample level is 1295.75 kW, while the relative 
ratio of minimum and maximum power is 0.33. 
The problem with DSO is that the digitization of the network is not complete, and a 
large number of consumers do not have smart meters. Because of that, data is available 
only with monthly consumption readings. It is necessary to detect anomalies in the data 
collected in this way, and this is a specific problem. Figure 3 shows the monthly energy 
consumption over a period of seven years. In that case, it is necessary to observe the 
annual load diagram shown in Fig. 4. Such an annual load diagram can be compared with 
previous annual diagrams and diagrams of neighboring consumers in the same category. 
The diagram in Fig. 4 refers to three arbitrary users, and it is concluded that the diagram 
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must be normalized with the maximum energy or mean energy over the observed time 
interval. Data processing was performed in Matlab [13].

Figure 3. Monthly load diagrams.

In Fig. 4 (the normalized diagram), different load failures and different user behaviors can 
be observed. For these reasons, quantifiers were calculated for a set of 237 users. In order 
to observe the monthly consumption of different consumers, new quantifiers, shown in 
Table 1, will be introduced. The behaviors and values of the quantifiers depend on the load 
diagram. Excessive quantifier deviation for some users from other users will indicate the 
existence of an anomaly. This analysis is present in Section 5.

Figure 4. Normalized monthly load diagrams for different users  
in the same part of the distribution network.
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Table 1. Statistical indicators for anomaly detection.

Indicator Description code

Coefficient of variation   a1=Pmax./(Pmin+eps)

Ratio between peak and valley load  a2=Pmin./Pmax

Ratio between peak and average load a3=Pmax./Psr

Valley coefficient a4=max(P(i+1)-P(i))

Load variance a5=sum(ΔP(i))

Time of maximum power utilization T= sum(P’)./Pmax

TYPES OF POWER CONSUMPTION ANOMALIES

Non-technical losses, commercial losses, and electricity theft detection can be done by 
processing the collected measurement data. The easiest way is to compare the characteristic 
indicators of load diagrams. If there are load diagrams of customers with and without 
electricity theft, it is possible to create indicative critical values for indicators. If there are 
no measurements from consumers with regard to theft, then there is the possibility of 
creating different diagrams with certain anomalies. The types of electrical energy theft 
occurring in DSO can be presented as follows:
1. Multiplying all samples by the same randomly chosen value (lower than one)
2. “On-off ” attack in which the consumption is reported as zero during some intervals
3. Multiplying consumption by a random value that varies over time
4. The combination of the second and the third type
5. Multiplying only the peak loads by the same randomly selected value (lower than one).
Computer simulation is used to form all five anomalies from a set of real measurement 
data. The obtained annual diagrams are given in Fig. 5. 
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Figure 5. Comparing the diagrams of the honest consumer and the created anomalies.

For all six cases from Fig. 5, the indicators from Table 1 are calculated. Fig. 6 presents the 
values of these parameters.
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Figure 6. Comparing the indicators a2, a3 (left) and a4, a5 (right) in six cases.

In order to analyze the sensitivity for two different consumers, for two different con-
sumption diagrams (7 a) and b)) the parameters were calculated and plotted. By looking 
at Fig 7 c), d), e) and f), the behavior of the parameters is very similar for different types 
of anomalies. Based on that, it can be concluded that it is necessary to further determine 
their limit values, which would represent triggers for finding anomalies. Table 2 presents 
exact values, while the bold numbers indicate the limit values of the operating parameters.
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Table 2. Exact vales for statistical indicators for anomaly detection.

Indicators Base case 1. anomal. 2. anomal. 3. anomal. 4. anomal. 5. anomal.

a1 1.2723 1.2723 4.50E+15 22.8547 4.21E+15 16.5368

a2 0.7859 0.7859 0 0.0437 0 0.0604

a3 1.1038 1.1038 1.2034 2.1825 2.3660 1.1637

a4 0.2140 0.1525 0.9584 0.6903 0.7815 0.8404

a5 1.5846 1.1293 5.0990 7.3465 7.1403 3.2666

T 21.7411 21.7412 19.9424 10.9962 10.1435 20.6222

RESULTS FOR REAL DATASET 

One way to create the limit values for indicator is shown in the previous section. This 
method involves creating artificial anomalies and monitoring whether consumers will 
fall into these behaviors and deviate from their daily electricity consumption habits. The 
second way is to analyze each real load diagram for each consumer from one part of smart 
grid. This method requires the existence of measurements from all smart meters and data 
storage. For each consumer and his diagram, the indicators from Table 1 are calculated. 
Then, for each of the 237 consumers that were considered, the values of those coefficients 
are observed, and deviations are detected. For that deviation, the limit values are specified 
and shown in Fig. 8. Table 3 presents the number of users that meet the conditions for each 
indicator. The cross section of all conditions picks out 5 consumers whose load diagram 
satisfies all 6 conditions in terms of indicators. So, those five consumers definitely have an 
anomaly and need to be checked by DSO inspection.

Table 3. Number of customers with detected anomalies.

Condition a1 > 20 a2<0.1 a3>2 a4>0.6 a5>4 a6<10 Cross

Detected 
customers 15 24 31 20 19 21 5
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Figure 7. Statistical indicators calculated based on Table 1: (a) Load diagram for user 1; (b) Load 
diagram for user 2 (c) a2 and a3 for user 1; (d) a2 and a3 for user 2 (e) a4 and a5 

 for user 1 (f) a4 and a5 for user 2.
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Figure 8. Statistical indicators with specified limits for 237  
consumers: (a) a1; (b) a3 (c) a4; (d) a2 (e) a5 (f) T.
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CONCLUSION

This paper presents a method of detecting non-technical losses based on indicators for 
anomaly detection in load diagrams. Based on the collected measurements, the paper 
explains the possible methodologies for observing and detecting anomalies at the mea-
surement points to detect non-technical losses, commercial losses, and electricity theft. 
The paper points to the possibility of simulating the creation of anomalies based on a 
realistically recorded load diagram. Also, the paper indicates the possibility of comparing 
all recorded load diagrams from the same part of the smart grid. In both cases, indicators 
are calculated to detect the existence of an anomaly using their limit values. Future work 
will be focused on using artificial intelligence and big data from the smart grid to create 
an algorithm for the same purpose.
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