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Abstract: Three relevant types of suboptimal binary search trees are comparatively evaluated in 
this paper: two well-known representatives of height-balanced approaches (the AVL and red-black 
trees) and a popular self-adjusting splay tree. After a brief theoretical background, an evaluation 
method was described that employs a suitable synthetic workload method capable of producing 
diverse desired workload characteristics (different distributions and ranges of key values, varying 
input sequence lengths, etc.). Evaluation analysis was conducted for search, insert, and delete 
operations separately for each particular type and in appropriate combinations. Experimental 
results for an average operation cost as well as for tree maintenance cost are comparatively 
presented and carefully discussed. Finally, the suggested favorable conditions for application of 
each tree type are summarized.
Keywords: binary search trees; AVL trees; red-black trees; splay-trees; self-adjusting trees.

1. INTRODUCTION

Binary search tree (BST) is a basic data structure that combines two benefits. It allows for 
fast binary searching of a sorted structure and also, like each dynamic structure, ensures 
efficient maintenance during the insertion and deletion of keys. It provides the O(log n) 
complexity of search, insert, and delete operations in the best and average cases, but for 
degenerated topologies in the worst case the performance of operations can be deteriorated 
to O(n). In order to prevent such cases, the tree topology should be kept balanced. 
However, keeping the optimal balance after each insert or delete operation can impose a 
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significant maintenance overhead (up to O(n) sometimes). A compromise is often found 
in suboptimal BSTs by somewhat relaxing optimal balancing criteria. This approach can 
significantly reduce the maintenance cost while still guaranteeing the O(log n) complexity 
of search even in the worst case with some small constant degradation factor compared to 
an optimally balanced tree. Different suboptimal strategies have been proposed, but height 
balancing is the most popular one. The main representatives are AVL trees and red-black 
trees, which are based on some local sub-tree balancing criteria rather than global ones. In 
both types of BST (but in different ways), the difference in heights of the leaves is practically 
restricted within a small constant factor, preventing the linear worst case.
The aforementioned balancing techniques are efficient if the keys in the tree are searched for 
with nearly uniform probabilities. However, the search probabilities for different keys are 
often non-uniform, especially when the level of temporal locality is increased. According 
to that, self-adjusting binary search trees have been proposed that are reorganized even 
after a search operation. A prominent representative of such an approach is the splay tree, 
where the successfully found key is moved up to the root in order to exploit the benefits 
of temporal locality. Since splay trees do not have some explicit balance criteria, the worst 
case can even go up to O(n), which is acceptable only if it occurs vary rarely. However, the 
amortized analysis, which gives the time complexity of operations in a series, guarantees 
O(log n) complexity in the average case.
The main goal of this paper is to conduct a comparative performance evaluation of AVL, 
red-black, and splay trees as prominent representatives of suboptimal binary search trees. 
In order to analyze the performance of these trees under a wide spectrum of different 
conditions, an appropriate synthetic workload generator is used, which is capable of pro-
ducing diverse desired workload characteristics. The performance indicators were chosen 
to be platform- and implementation-independent. The evaluation results should indicate 
the optimal suggested condition for the employment of these types of trees. 

2. MATERIALS AND METHODS

This section provides a brief theoretical background on the AVL, RB, and splay trees, 
respectively, with their definitions and considerations on the time complexity of the 
operations.

2.1. AVL Trees

The AVL trees proposed by Adelson-Velski and Landis are height-balanced trees [2]. Let 
us define the balance of a node as the difference between the heights of its left and right 
sub-trees. Then, the AVL tree is defined as a binary search tree in which the absolute value 
of the balance for each node is one at most. The height of an empty tree is defined as 0. 
In this way, the balance criterion is considerably relaxed. While the leaves in an optimally 
balanced tree can be deployed only in two lowest levels, in an extreme case the leaves of 
the AVL tree can span the range between levels h and 2h. The worst topology of the AVL 
tree with maximum height for a given number of nodes is referred to as the Fibonacci tree.
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In the AVL trees, the node balance can only be 1, 0, and -1. A node with a balance of 1 
leans left, while a node with a balance of -1 leans right. Some insert or delete operations 
can disturb the balances of the node ancestors on their path to the root, but, as long as 
they are in the allowed range, there is no need to reorganize the tree. However, when at 
least one ancestor balance becomes 2 or -2, the specific tree adjusting operations (called 
single or double rotations) are carried out in order to return the balance of all nodes to the 
allowed range. The rotations are relatively inexpensive and infrequent, so the overhead of 
maintaining the AVL tree is quite acceptable [3].
In spite of the fact that the AVL tree is only “nearly” balanced, it was demonstrated in [4] 
that for an AVL tree with n nodes, its height h satisfies the condition

( )1.4405 log 2 0.3272h n< + − (1)

Since the number of comparisons on the search path is determined by the tree height, its 
finding guarantees that the time complexity of the search is O(log n), where n denotes 
the number of nodes in the tree. Along with the same time complexity as in an optimally 
balanced tree, the degradation factor of the worst case search path is also quite acceptable 
(less than 45%). Since the eventual rotations in insert and delete operations impose some 
practically constant additional overhead, the length of the search path is also dominant 
factor which determines their O(log n) complexity.

2.2. Red-black Trees

Another nearly balanced topology principally based on height balancing is the  
red-black tree. While the AVL tree directly restricts the local dis-balance for each node, the  
red-black tree indirectly controls the length of the search paths by defining the color of 
each node. It uses an extra bit that denotes a node as red or black and imposes some 
coloring rules as follows.
The binary search tree is a red-black tree if it satisfies the following conditions [5]: 
1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both his sons are black.
5. Every path from a given node to any of its descendant leaves contains the same number 
of black nodes.
In the rest of the paper, these trees will be referred to as RB trees.
The RB trees also represent an implementation of the 2-3-4 trees in a form of binary tree 
[6]. The 2-3-4 trees have optimally balanced topology since all leaves are at the same level. 
Besides the usual 2-nodes as in the binary trees, these trees may also have 3-nodes with 
two keys and three sub-trees, as well as 4-nodes with three keys and four sub-trees. The 
implementation of the 2-3-4 trees requires more memory, and insert and delete operations 
are more complex since, when necessary, one type of node is transformed into another. 
Therefore, it is very important that the 2-3-4 trees are B-trees of degree 4, being isomorphic 
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with the RB tree, which means that for each 2-3-4 tree there exists at least one RB tree as 
its binary representation [7]. 
If the tree structure is modified by some insert or delete operation that impairs the requ-
irements of the definition, rotations are performed in order to re-establish the correct 
structure and coloring. The basic operations of the RB trees have been described in [4, 7] 
and [8]. It is demonstrated in [5] that the height of the RB tree is bounded by

( )2 log 1h n< +
. (2)

Therefore, just like in the AVL trees, the logarithmic performance of all operations if the 
RB trees is also guaranteed in the average and worst case.

2.3. Splay Trees

Splay trees were proposed by Sleator and Trajan [9]. Although they do not rely on some 
explicit balancing strategy, unlike AVL and RB trees, the splay trees are reorganized on 
each access, including even non-invasive search operations, by means of rotations. Each 
accessed or inserted key is moved to the root, as well as the predecessor/successor of a 
deleted or unsuccessfully searched key. The rationale behind this is to exploit temporal 
locality with increased probabilities of accessing recently used keys or range of values.
Two techniques can be employed for tree reorganization: top-down splaying and bottom-
up splaying. In bottom-up splaying, the tree is searched for the key in the first step, saving 
some parent information in nodes on the search path, and then the node is lifted up to 
the root by consecutive zig, zig-zag, and zag-zag rotations, as described in [10]. In [9], the 
authors favor top-down playing since it performs in one step without need for an extra 
storage. Because of that, top-down splaying was used in this evaluation study.
Although splay trees do not guarantee O(log n) complexity in the worst case, it is demon-
strated in [11] that the complexity of performing a series of m operations in splay tree with 
n keys is

( )( )1 log logO m n n n+ +
. (3)

Consequently, the amortized cost of operations in splay trees is also logarithmic.

3. RELATED WORK

The comparison of different kinds of binary search trees was a goal of many studies. The 
study from [12] follows a similar approach to our study. Six types of binary search trees 
were compared: random BST, AVL tree, and four types of self-adjusting binary search 
trees (splay trees with top-down splaying and bottom-up splaying, and self-adjusting trees 
with MTR and Exchange techniques described in [13]). It was concluded that AVL trees 
are the most efficient ones when searching is the most frequent operation, while, among 
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the self-adjusting structures, the splay trees with top-down splaying technique perform 
the best in a highly dynamic environment.
In [14], four types of binary search trees were compared: unbalanced BST, AVL tree, RB 
tree, and splay tree. For each of them, five different node representations were considered: 
plain, with parent pointers, threaded, right-threaded, and with an in-order linked list. In 
total, 20 BST variants were compared using three experiments in real-world scenarios 
with real and artificial workloads. The measured parameters were execution time and the 
number of comparisons. The results indicate that RB trees are preferred when random 
input with occasional runs in sorted order is expected. When insertions in sorted order 
are prevalent, the AVL trees outperform the others for later random access, whereas splay 
trees perform the best for later sequential or clustered access.
In [15], performance of height-balanced trees (HB[k]) is evaluated. Both analytical and 
experimental results that show the cost of maintaining HB[k] trees as a function of k are 
discussed. The AVL tree is treated as a special case for k = 1. For the AVL trees, it was 
concluded that only the search time is a function of the tree size, and in a general case, 
the maintenance does not depend on the tree size. In general, for HB trees for k > 1, the 
execution times of the procedures for maintaining the HB[k] trees are independent of the 
tree size, except for the average number of nodes revisited on a delete operation in order 
to restore the HB[k] property on its trace back. Also, the cost of maintaining HB[k] trees 
drops significantly as the allowed imbalance (k) increases. 
Bear and Schwab in [16] empirically compare the height-balanced trees with the  
weight-balanced trees by means of simulation with a synthetic workload. In the conclusi-
on, they give preference to the AVL trees.
In [17], a novel limit-splaying heuristic called periodic-rotation is described. It performs 
splaying after n insertions or accesses in order to reduce the maintenance cost while 
preserving the performance. They experimentally compared seven data structures: 
the simple BST, the RB trees, splay trees both with top-down and bottom-up splaying 
techniques, randomized trees, and their heuristic splay tree. It was presented that such 
heuristic splay tree where splaying is done periodically rather than on each access is 
around 27% faster on average than efficient bottom-up splaying. Over five separate text 
collections that were chosen for workload, several somewhat unexpected conclusions 
were highlighted: first, top-down splaying is slower than bottom-up splaying in practice; 
second, bottom-up splaying is about as fast as a self-adjusting randomized tree, but in 
general is around 25% slower than a BST; and, finally, the most efficient heuristic splaying 
scheme is only 3% faster than a BST, which performed even better than RB trees.
The study in [18] provides a comparative analysis of a number of different binary search 
trees: un-optimized BST, AVL tree, several types of the weight-balanced trees (described 
in [19]), the trees where the searched node moves by one level towards the root [13], as 
well as the tree with appropriate combinations of some algorithms. The evaluation is based 
on measured execution times for different types of input sequences. The operations con-
sidered were insertion and searching. Although the basic search operation in an ordinary 
binary tree is quite efficient in many cases, it was concluded that the tree that combines the 
principles of the AVL tree and an ordinary BST is the most efficient generally. 
Although the studies from [12] and [14] are similar to the topic of our study in terms 
of analyzed trees, the comparisons are carried out from different perspectives. While 
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some previous studies (e.g., [14]) observed a specific environment in which the trees were 
applied, our study presents a more general performance study independent of the imple-
mentation of the algorithm, operating system, the specific applications, and the machine 
on which the tests are conducted.

4. EVALUATION METHOD

Although the real workloads are preferred in many studies focused on a specific 
area of applications, they are unable to reflect a wide spectrum of different workload 
characteristics. Since an appropriate synthetic workload generator is very convenient 
for producing diverse desired workload characteristics, our comparative performance 
evaluation employs the simulation method with specific synthetic workload described in 
[20]. The main parameters of the workload are: the number of keys, the range of the key 
values, the distribution of the key values, time locality, the relative frequency of search, 
insert, and delete operations, the probability of successful and unsuccessful search, 
etc. The performance indicators have been chosen to be independent of the algorithm 
implementation and platform on which the measurements are performed (tree height, 
number of rotations, etc.). 
The various key sequences were generated in order to obtain a more complete insight 
into the chosen trees performance. The intervals from which the key values are taken, the 
number of elements in the sequence, and the frequency of the key values were varied. A 
special care was taken to simulate the time locality of the keys in some cases.
The lengths of the key sequences are chosen to be between 10 and 1,000,000 elements in 
multiples of 10. The number of elements in the sequences was varied in order to establish 
how the performance depends on the tree size. 
The values in the same key sequence may be repeated. They are taken from intervals whose 
lower bounds are set to zero and whose upper bounds vary from case to case. Four groups 
of the key sequences used in this evaluation differ according to the way of key generation. 
The sequences without key repetitions are used for building an initial tree.
The first group of key sequences is sorted in increasing order. They contain unique key 
values without repeating. 
The second group of key sequences is similar to the first, but the order of the key values is 
random. All values appear exactly once in the sequence, and the length of the key sequence 
corresponds to the interval upper bound. 
In the third group, the keys are also generated randomly. However, the elements are 
chosen out of a certain interval, whose upper bound also varies, as well as the sequence 
length. The consequence of such a key choice is that some values from the interval can be 
repeated, while other values do not appear in the sequences.
The fourth group has the key values that can also be repeated in a sequence, while the 
sequence lengths and the interval upper bounds are varied like in the third group. Howe-
ver, instead of using random, uniformly distributed key values, the goal was to obtain the 
key sequences with a non-uniform distribution and to enforce the temporal locality of 
chosen values, which is sometimes quite pronounced in tree accesses. The function
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was used to enforce different levels of temporal locality in the following way. First, an 
initial sequence with n keys without repeated values is formed (let it denote by array key). 
Then, x is randomly chosen from the interval [ ]0,1x∈ . With such an x, y is calculated 
according to equation (3). Since [ ]0,1y ∈  for a > 0, index i is then calculated as i n y= ⋅
. Finally, element of the key sequence with index i(key[i]) is entered into the resulted key 
sequence. This procedure is repeated until the resulting sequence of the required length is 
generated. 
By varying the parameter a, the shape of the curve can be adjusted, as shown in Figure 
1. Values 1, 10, 50, and 100 were taken for parameter a, and the results for a=100 were 
analyzed. For higher values of a, a uniform distribution of x, values of y are lower. Con-
sequently, lower indices of the key array are much more probable, which increases the 
time locality in the resulting sequence of key values closer to the start of the array.
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Figure 1. Function (4) in the interval x ∈ [0, 1] for the different values of parameter a.

Search, insertion, and deletion operations are evaluated both independently in separate 
series and jointly in mixed series. In a mixed series, percentages of particular operations 
are varied, and operations appear randomly according to the adopted frequency.
The following performance indicators were collected during experiments: 

• Average height during search operation – average height where the element was found 
during a successful search or the height of the node where the search was finished in 
the case of unsuccessful search. It indicates the number of comparisons on the search 
path.

• Tree height – this parameter refers to the maximum height of the initial tree on which 
the search series was performed.

• Average number of rotations per operation. It indicates the maintenance cost.
• Tree height at the end of a series of insert operations.
• Average height of the splay tree in an entire series of operations.
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5. RESULTS

The experimental results collected from running the series of insert, search, and delete 
operations are presented and discussed in the first three subsections, respectively. In the 
last subsection, the results from a series of appropriate combinations of all three operations 
are shown and analyzed.

5.1. Insert Operation

Since only different values can be inserted in a binary search tree, only the sequences with 
unique keys are applicable for evaluation of insert operation. The insertions were started 
with initially empty trees.

Table 1. Series of insert operations for input key sequences  
with sorted values in increasing order.

Number of inserted 
keys (sorted)

Average height per operation
Average number  

of rotations  
per insert operation

Height of 
 resulted 

tree
AVL RB Splay AVL RB AVL RB

100 5.730 8.090 0.990000 0.93000 0.89000 6 10
1,000 8.977 14.481 0.999000 0.99000 0.98300 9 16

10,000 12.362 21.138 0.999900 0.99860 0.99760 13 23
100,000 15.689 27.723 0.999990 0.99983 0.99969 16 30

1,000,000 18.951 34.379 0.999999 0.99998 0.99996 19 36

The results for sorted input key sequences of variable lengths are shown in Table 1. Since 
the current inserted key is always the highest one, splay trees need no rotations, but after 
the series of insert operations, the resulting tree has degenerated topology and is far from 
optimal for most operations that can follow in practice. The AVL trees have a considerably 
lower average height of the current inserted node, but the RB trees have slightly less 
average rotations per operation. As a comparison and a rotation are the operations with 
similar cost, so the AVL tree is more efficient at inserting a sorting sequence. In addition, 
its final tree height in case of the RB tree is almost twice as tall. Their efficiency is greater 
considering the final height after the series of insert operations. Since this tree can be 
the initial tree for some other operations, it can have a serious impact on the cost of the 
operations that follow.
The results for inserting key sequences generated randomly are given in Table 2. The 
heights of resulted tree are shown for the AVL and RB tress only since it is very relevant 
for subsequent search operations, while for splay trees it changes with each operation. 
Splay trees perform the worst by far in this case, as expected. As for both height indicators, 
the AVL and RB trees show similar results, while the RB trees have fewer rotations per 
operation.
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Table 2. Series of insert operations for input key sequences with random values.

Number of
inserted keys 

(random)

Average height per  
operation

Average number  
of rotations  

per insert operation

Height of  
resulted tree

AVL RB Splay AVL RB Splay AVL RB
100 5.390 5.410 7.390 0.680 0.550 2.450 7 7

1,000 8.699 8.777 13.929 0.646 0.555 4.954 11 11
10,000 12.056 12.074 20.442 0.645 0.536 7.219 15 15

100,000 15.450 15.523 27.112 0.644 0.534 9.574 19 20
1,000,000 18.815 18.829 33.769 0.640 0.530 11.927 23 23

The results from both Tables 1 and 2 for the same type of tree indicate that the average 
number of rotations per operation is practically constant over all varied tree sizes for both 
random and sorted key sequences, except for inserting keys from random sequence in 
case of splay trees, where this indicator steadily increases with tree size. In the case of 
most unfavorable sorted input, both AVL and RB trees experience practically a rotation 
on every insert, while for random input the more efficient RB tree requires a rotation 
in almost every other insertion. The situation for splay trees is quite opposite, since the 
maintenance cost for random input is much higher than for a sorted one. Although splay 
trees most efficiently handle insertion of sorted key sequence, the final tree height has 
degenerated topology equivalent to a linked list inappropriate for later searching. The fact 
that the AVL trees have a more restrictive balance criterion contributes to more efficient 
handling in inserting keys of a sorted sequence, reflected in a considerably smaller average 
height per operation and final tree height than in the case of the RB trees.

5.2. Delete Operation

A series of delete operations are conducted on initial trees generated with a series of insert 
operations of random key values in order to be large enough. The heights of the initial 
trees were 23 for both the AVL and RB trees and 69 for the splay tree. As in the case of 
insert operations, key sequences with no repeated values were chosen in order to avoid 
unsuccessful delete operations.
The results presented in Table 3 confirm that splay trees perform the best in cases of 
deletions of keys from sorted sequences. Each delete operation raises the right subtree in 
which the next key in sequence is found, making its subsequent deletion more efficient. In 
the case of splay trees, as the number of operations in a series increases, both the average 
height of the deleted node and the average number of rotations decrease. Except for a very 
small percentage of nodes deleted from the initial tree, the RB trees perform better than 
AVL trees but are still much worse than splay trees.
For the deletion of keys in random order (Table 4), the AVL and RB trees perform very 
similarly, and their performance indicators only slightly change with the varying number 
of deleted keys. On the other side, splay trees are again noticeably less efficient, and their 
performance deteriorates with an increasing number of deleted keys in random order.
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Table 3. Series of delete operations on key sequences  
with sorted values in increasing order.

Number of deleted 
keys (sorted)

Average height of deleted node  
per operation

Average number of rotations  
per delete operation

AVL RB Splay AVL RB Splay
100 15.520 15.980 2.210 0.600 0.700 0.890

1,000 14.710 15.793  1.500 0.572 0.680 0.546
10,000 14.730 14.717 1.392 0.578 0.662 0.497

100,000 14.150 14.083 1.361 0.578 0.659 0.482
1,000,000 13.708 12.534 1.347 0.575 0.658 0.475

Comparing the results for the sorted and random order of deleted keys in splay trees, two 
opposite trends can be noticed. Longer sorted key sequences during deletions are favorable, 
while longer random ones are unfavorable for both the average height of the deleted node 
and the average number of rotations. The AVL and RB trees have a larger average height 
and a smaller average number of rotations for the same number of delete operations in the 
case of a random key sequence. Also, unlike splay trees, these performance indicators for 
AVL and RB trees are relatively insensitive to the number of deleted keys.

Table 4. Series of delete operations on key sequences in random order.

Number of deleted keys 
(random)

Average height of deleted  
node per operation

Average number of rotations 
 per delete operation

AVL RB Splay AVL RB Splay
100 15.060 16.000 8.550 0.330 0.320 3.160

1,000 15.835 16.321 14.648 0.384 0.357 5.458
10,000 15.402 16.541 21.745 0.351 0.359 8.166

100,000 16.703 16.865 28.671 0.357 0.361 10.747
1,000,000 16.465 16.437 35.687 0.378 0.387 13.359

5.3. Search Operation

The search operation is especially important because it is usually the most frequent 
operation and also because it is the first part of insert and delete operations. This is the 
reason why the performance of this operation is analyzed in more detail. 
Search operations in the AVL and RB trees do not modify the tree topology, and no ro-
tations are required. Therefore, the average length of the search path is the only relevant 
performance indicator. However, in splay trees, every search operation is followed by an 
adjustment of the topology, and the average number of rotations is meaningful as well. All 
the results presented in Table 5 are obtained by searching for a sorted sequence of keys in 
increasing order. The heights of the initial trees were 15 for the AVL and RB trees and 43 
for the splay tree. In the first three cases (up to 10,000 keys searched), all searches were 
successful, while in the other two cases, there were 90% and 99% unsuccessful searches.
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Table 5. Series of search operations on key sequences with sorted values in increasing order.

Number of searched keys  
(sorted)

Average search path length  
per operation Average number of 

rotations (splay tree) AVL RB Splay
100 12.260 11.160 2.790 0.670

1,000 11.697 11.472 2.460 0.515
10,000 11.578 11.564 2.348 0.473

100,000 14.656 12.858 1.135 0.047
1,000,000 14.966 12.986 1.013  0.048

Again, the splay trees are obviously the most efficient ones when the key sequence is sorted. 
With longer search sequences, their performance is steadily improving. After the first 
operation in a series radically rearranges the tree topology, each subsequent search slightly 
adjusts it to make the subsequent operation more efficient. Finally, when unsuccessful search 
operations for key values higher than the maximum key in the tree prevail, they execute 
very fast since no further tree adjustments are needed. However, the average cost of search 
operations in the AVL and RB trees depends greatly on the initial tree size since there are no 
adjustments during the series of search operations. Unlike splay trees, in case of AVL and RB 
trees performance is deteriorated when the number of keys in the sorting sequence grows 
due to prevailing number of unsuccessful search operations (their search paths are ended in 
leaves of the tree). The performance of the AVL tree is especially affected in this case.

Table 6. Series of 100,000 search operations on key sequences with random distribution.

Range of searched key values 
(random)

Average search path  
length per operation

Average number of  
rotations (splay tree)

AVL RB Splay
0..99 13.741 14.682 6.254 2.059

0..999 13.299 14.256 10.868 3.574
0..9,999 13.756 14.813 15.662 5.111

0..999,999 16.743 15.853 3.421 0.884

Table 6 presents the results for sequences of 100,000 search operations with random 
distribution of key values performed on initial trees which were built with series of insert 
operations of random keys values between 0 and 99,999. Table 7 shows the results obtained 
under the same conditions but with a non-uniform distribution and enforced temporal 
locality of the searched key values. The heights of the initial trees were 19 for the AVL tree, 
20 for the RB tree, and 56 for the splay tree. In cases when range of key values searched was 
0..999,999, there were approximately 90% unsuccessful search operations, while in other 
sequences all searches were successful. 
Splay trees clearly outperform the others when non-uniform sequences of key values 
are searched since they can take advantage of increased temporal locality (much better 
indicators for splay trees in Table 7 compared to those in Table 6) by proper adjustment 
of the topology, while the AVL and RB trees are insensitive to this phenomenon. Their 
performance rather depends on a set of key values and their place in the initial tree. For 
both distributions, the average cost of a successful search operation in the AVL trees is 
slightly better than in the RB tree. The large percentage of unsuccessful operations affected 
the performance of the analyzed trees in the same manner as in the previous case.
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Table 7. Series of 100,000 search operations on key sequences  
with non-uniform distribution.

Range of searched key values
(non-uniform)

Average search path  
length per operation

Average number of  
rotations (splay tree)

AVL RB Splay
0..99 14.043 13.283 1.916 0.593

0..999 13.307 14.183 5.829 1.919
0..9,999 13.290 14.374 10.296 3.406

0..999,999 16.712 15.820 2.763 0.666

Figure 2 depicts how the distribution of key values in the search sequences affects the 
average length of the search path. It more explicitly demonstrates much better handling of 
increased temporal locality of search sequences in splay trees than in the AVL and RB trees.

Figure 2. Average lengths of search path for series of search operations 
 for random and non-uniform key sequences.

In previous experiments, unsuccessful search operations for key values in the interval 
100,000..999,999 traversed the right-most search part, which is not quite typical. Therefore, 
a more realistic situation with unsuccessful searches dispersed across an entire tree 
should be simulated. To this end, about 20,000 randomly chosen key values were deleted 
from an initial tree randomly built with 100,000 keys. The obtained tree was used for 
the evaluation of search sequences of 100,000 keys. Four ranges of key values (0..29,999, 
0..49,999, 0..79,999, 0..99,999) and two distributions (random and non-uniform) are 
varied to produce six new sequences. 
The results from such input sequences are given in Table 8 for random distribution and 
in Table 9 for non-uniform distribution. The efficiency of search operations in the AVL 
and RB trees practically does not depend on the range of search keys or type of distri-
bution. A number of unsuccessful search operations increases their average search path 
to some extent. The AVL tree is again slightly better than the RB tree, but both types of 
trees outperform the splay tree, especially for randomly distributed searched key values. 
Although enforced temporal locality in non-uniform distribution evidently improves the 
performance of search operations and the maintenance cost of the splay tree, it is not 
sufficient to make it better than the AVL and RB trees in conditions when unsuccessful 
search operations are spread over a larger range of key values.
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Table 8. Series of 100,000 search operations in different ranges  
of searched key values (random distribution).

Range of searched
key values
(random)

Average search path length  
per operation

Average number of 
rotations 

 (splay tree)AVL RB Splay
0..99,999 14.991 15.062 22.208 7.188
0..79,999 14.903 15.224 20.503 6.672
0..49,999 14.810 15.573 19.569 6.370
0..29,999 14.557 15.566 18.249 5.940

Table 9. Series of 100,000 search operations in different ranges  
of searched key values (non-uniform distribution).

Range of searched
key values

(non-uniform)

Average search path length  
per operation

Average number  
of rotations 
 (splay tree)AVL RB Splay

0..99,999 14.448 14.426 16.829 5.502
0..79,999 15.152 15.479 16.172 5.290
0..49,999 15.365 16.075 16.536 5.406
0..29,999 14.675 15.656 15.797 5.027

5. DISCUSSION

Finally, after insert, delete, and search operations are analyzed separately, a more realistic 
situation when different operations are interspersed is in place. Different workload 
characteristics are also simulated by varying the relative frequencies of these three types 
in a sequence. Two different series of operations are analyzed. It was assumed that the 
search operation is the most frequent one, while delete and insert operations are equally 
represented in this evaluation. The initial tree was built from the values in the interval [0, 
99999] inserted in random order. The cost of building the initial tree is not accounted for 
in the evaluation of the mixed series, which has 100,000 operations.

Table 10. Series of 80% search, 10% insert, and 10% delete operations  
with random distribution of key values.

Range of key values
(random)

Average height per operation Average number of rotations per 
operation

AVL RB Splay AVL RB Splay
0..9 14,189 15,897 1,290 0,021 0,015 0,143

0..99 13,325 15,813 2,157 0,023 0,018 0,463
0..999 11,623 13,209 7,120 0,023 0,020 2,319

0..9,999 14,356 15,359 16,556 0,029 0,028 5,499
0..99,999 14,711 14,782 21,957 0,033 0,030 7,309

0..999,999 17,925 18,017 19,020 0,066 0,055 6,275

The results for the first mixed series made of 80% search, 10% insert, and 10% delete 
operations with the key values from different ranges in random order are presented in 
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Table 10. Splay trees are mostly sensitive to the range of key values. For smaller ranges, 
they have a smaller average height per operation than both AVL and RB trees at the 
expense of rotations constantly used to adjust the tree. However, as the growing range of 
values decreases, the temporal locality and its average performance become significantly 
worse. When compared to the RB trees, the AVL trees, as a more restrictive topology, 
require slightly more rotations, but it pays off in a smaller average height per operation 
due to the prevalent number of search operations. For smaller ranges of key values, both 
the AVL and RB trees are less sensitive to this parameter. However, a very large range of 
key values impairs their performance because of the increased incidence of unsuccessful 
search operations ending in the leaves. 
Table 11 shows the experimental results for the same frequencies of operations as before, 
but the key values in mixed sequences follow the non-uniform distribution. It is evident 
again that splay trees perform noticeably better for key values with a non-uniform distri-
bution of exploiting enforced temporal locality. On the other side, there is no consistent 
effect on the performance of the height-balanced representatives for this distribution. The 
AVL trees are still slightly better.

Table 11. Series of 80% search, 10% insert, and 10% delete  
operations with non-uniform distribution of key values.

Range of key values 
(non-uniform)

Average height per 
operation

Average number of rotations per 
operation

AVL RB Splay AVL RB Splay
0..9 15,057 15,127 0,987 0,023 0,019 0,031

0..99 15,025 15,176 2,809 0,018 0,010 0,630
0..999 14,841 15,899 8,336 0,009 0,006 2,775

0..9,999 15,395 16,447 13,440 0,014 0,013 4,482
0..99,999 15,265 15,292 18,195 0,023 0,021 6,071

0..999,999 16,961 17,168 17,345 0,060 0,050 5,748

Table 12. Series of 50% search, 25% insert, and 25% delete operations  
with random distribution of key values.

Range of key values
(random)

Average height per 
operation

Average number of rotations per 
operation

AVL RB Splay AVL RB Splay
0..9 14,459 15,729 1,724 0,052 0,040 0,357

0..99 14,231 15,594 4,058 0,056 0,046 0,120
0..999 12,716 13,618 7,402 0,058 0,048 2,395

0..9,999 14,174 15,168 16,869 0,066 0,059 5,694
0..99,999 14,795 14,864 23,330 0,083 0,073 7,970

0..999,999 17,101 17,660 21,158 0,165 0,136 7,071
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Table 13. Series of 50% search, 25% insert, and 25% delete  
operations with non-uniform distribution of key values.

Range of key values
(non-uniform)

Average height per 
operation

Average number of rotations 
per operation

AVL RB Splay AVL RB Splay
0..9 15,139 15,289 0,948 0,058 0,047 0,065

0..99 14,682 15,046 2,924 0,042 0,035 0,779
0..999 14,686 15,794 8,193 0,018 0,014 2,773

0..9,999 15,323 16,432 13,526 0,031 0,028 4,584
0..99,999 15,382 15,409 18,881 0,042 0,037 6,423

0..999,999 16,416 16,836 18,810 0,130 0,109 6,353

After that, the relative frequencies for the second mixed series were set to 50% for search, 
25% for insert, and 25% for delete operations to see how a higher percentage of input and 
delete operations affected the average cost per operation. The results for sequences with 
key values from different ranges are presented in Table 12 for random distributions and 
in Table 13 for non-uniform distribution. In case of the AVL and RB trees, the average 
number of rotations is growing almost linearly with the increased percentage of insert and 
delete operations. The cost of tree maintenance in splay trees is not much affected since 
they adjust the tree topology on each access. It seems that different relative frequencies of 
three operations different do not have significant impact on an average height per operation 
in all trees for both random and non-uniform distributions. Suitability of non-uniform 
distribution and smaller ranges of key values for splay trees is evidenced once again.

6. CONCLUSIONS

It can be concluded that the AVL and red-black trees perform quite similarly. However, 
in a number of cases, the AVL trees are slightly more efficient than their red-black 
counterparts in terms of average height per operation, especially in sequences of search 
operations and in sequences of mixed operations, as a consequence of their more stringent 
topology requirements. It comes at the expense of somewhat increased maintenance 
costs expressed in an average number of rotations. The red-black trees are more efficient 
when the key values in sequences are unique and random. Both types of trees are rather 
insensitive to the order of key values and temporal locality. On the other hand, the splay 
trees prefer situations where key values come in sorted order. They especially outperform 
the others when the temporal locality of accesses is increased and when searching for 
a rather narrow range of the key values. In these cases, the high cost of constant tree 
maintenance is amortized; otherwise, it can be intolerable. This conclusion indicates that 
a modified splay tree could be proposed that dynamically tracks the temporal locality of 
key values (e.g., access counters) and adjusts the tree topology only when it is justified.
For more information on AVL trees, readers may consult [15]. Details on the AVL-based 
settlement algorithm and reservation system for smart parking systems in IoT-based 
smart cities are presented in [16]. More details on red-black trees can be found in [17]. 
To read more on splay trees, readers may cf. [18]. To learn more about augmented binary 
search trees, cf. [19]. 
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