
Towards Hybrid Supercomputing Architectures

Nenad Korolija1*, Kent Milfeld2

1 School of Electrical Engineering, University of Belgrade, 73 Bulevar Kralja Aleksandra, 
11020 Belgrade, Serbia; nenadko@etf.bg.ac.rs
2 The University of Texas, Texas Advanced Computing Center, J.J. Pickle Research Campus, 
10100 Burnet Rd, Austin TX 78758; milfeld@tacc.utexas.edu
* Corresponding author: nenadko@etf.bg.ac.rs

Received: 2022-09-05 • Accepted: 2022-09-24 • Published: 2022-12-30 

CFS 2022, Vol. 1, Issue 1, pp. 47–54 
https://doi.org/10.5937/1-42710

Original research paper

Citation: N. Korolija and K. Milfeld, “Towards Hybrid Supercomputing 
Architectures,” Journal of Computer and Forensic Sciences, 1(1), https://
doi.org/10.5937/1-42710. Copyright: © 2022 by the University of Criminal 
Investigation and Police Studies in Belgrade. All rights reserved., 

Abstract:In light of recent work on combining control-flow and dataflow architectures on the 
same chip die, a new architecture based on an asymmetric multicore processor is proposed.
The control-flow architectures are described as a most commonly used computer architecture to-
day. Both multicore and manycore architectures are explained, as they are based on the same prin-
ciples. A dataflow computing model assumes that data input flows through hardware as either a 
software or hardware dataflow implementation. In software dataflow, processors based on the con-
trol-flow paradigm process tasks based on their availability from the same queue (if there are any). 
In hardware dataflow architectures, the hardware is configured for a particular algorithm, and data 
input is streamed into the hardware, and the output is streamed back to the multicore processor 
for further processing. Hardware dataflow architectures are usually implemented with FPGAs.
Hybrid architectures employ asymmetric multicore and manycore computer architectures that 
are based on the control-flow and hardware dataflow architecture, all combined on the same chip 
die. Advantages include faster processing time, lower power consumption (and heating), and less 
space needed for the hardware.
Keywords: high performance computing; dataflow programming; manycore architectures; asym-
metric cores.

1. INTRODUCTION

An exploration of using hardware for control-flow and hardware dataflow programming 
paradigms on the same chip die is presented.
In the following chapters, control-flow architecture principles, and computer architectures 
that are based on them are explained. Then, a description of dataflow architectures follows. 
Finally, a hybrid architecture that combines them is proposed. The communication 
between the control-flow hardware and the dataflow hardware on the same chip die might 
be achieved either using the cache memories that are shared between these hardware, 
or using the dedicated internal bus. As it will be explained, both approaches have their 
benefits and drawbacks.



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

48

2. MATERIALS AND METHODS

One of the main problems that computer vendors face in producing modern processors 
is the limited speed at which the hardware can operate. For decades, the speed has 
approximately doubled every two years. However, it appears that a 5GHz wall has been 
reached, and many commercial processors operate at 3GHz or less. Though the increase in 
speed is further possible, it would impose relatively high power consumption and cooling 
requirements. The alternative to improving the speed (or instruction rate) has been to 
increase the core count.
Hardware dataflow computing is based on the data traveling through the hardware. This 
solves many problems that computers based on control-flow face. However, the dataflow 
computing paradigm is suitable solely for certain types of high performance computing 
algorithms. Even algorithms that can be accelerated using the dataflow paradigm [1–5] 
include preparing data for parallel execution and collecting results, storing them in files, 
and auxiliary processing. As a result, dataflow hardware is usually connected to a multi-
core processor that controls it. It is the speed of the communication between the dataflow 
hardware and the control-flow hardware that limits the usability of this approach.
Another problem that arises from the combined control-flow and dataflow hardware is 
job scheduling. While certain jobs can be executed using both paradigms, other jobs can 
be executed solely on control-flow architectures.
Control-flow architectures are based on the von Neumann principle. Computer programs 
are written by programmers and compiled or interpreted. Both the compiler and the 
interpreter generate machine code understandable by the processor. Once the processor 
is ready to execute the instructions staged in memory, they are read and inserted into 
instruction registers. The instructions flow from the memory address register into the 
instruction register over the internal bus. Based on the instruction type, the processor 
might need to fetch an operand from memory as well. This involves the internal bus as 
well. Upon execution, the internal bus may be engaged once again, bringing the result 
into the register or memory. It should be noted that the internal bus might become the 
bottleneck. This limits the speed of the processing.
Control-flow hardware frequencies have been increasing for decades, approximately 
doubling every two years. This trend has ended, since further increases in speed impose 
overwhelmingly higher energy consumption and logical unit segmentation that cannot 
be accommodated for the projected speed-up that it might bring. Instead, as the density 
of packing transistors has grown lately, the number of processors has increased, which 
has evolved into multicore processor architectures. Increasing the number of cores does 
not proportionally increase performance, as many algorithms are not scalable enough. A 
potential solution is to exploit the dataflow paradigm [6–8].
Certain types of fast and relatively uniform processing are needed in computer graphics. 
In order to cope with this problem, graphics cards host thousands of small processing ele-
ments based on control-flow on the same chip. These architectures are often appropriately 
referred to as manycore architectures (relative to the core count of CPUs).
There are software and hardware dataflow architectures. Software dataflow architectures 
are based on the control-flow paradigm. Multiple processing elements are executing tasks 
from their common input queue, storing the results in their common output queue. The 



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

49

reason this is called dataflow computing is that data flows through the hardware based 
on the availability of processing elements and queues. Examples and discussions of these 
well-known architectures are available elsewhere [9‒10].
Hardware dataflow works on a completely different principle. The hardware is configured 
for a certain algorithm, and the data flows through the hardware.
The hardware is usually implemented using FPGAs, enabling it to be reconfigured for the 
next job that the hardware is to execute. Dataflow processors can enhance high perfor-
mance computing [11‒12], as evidenced by the many high performance applications that 
have been accelerated using the dataflow hardware [13‒18].
Transforming applications from the control-flow paradigm into the dataflow paradigm 
can be automated [19‒20]. However, even with automating transformations, exploiting 
hardware dataflow still requires significant programming effort [21]. Many high perfor-
mance algorithms are already implemented for dataflow hardware and available online 
[22‒23], which can help programmers who are new to the dataflow paradigm boost the 
development of dataflow algorithms.
Dataflow hardware jobs usually last relatively long compared to those of control-flow 
type of processors. The reason for this lies in the facts that the dataflow hardware is 
suitable only for high-performance computing algorithms and that the hardware has to 
be configured prior to the execution of the algorithm. In order to be able to execute the 
algorithm faster than the processor based on the control-flow paradigm, it has to perform 
both the configuration and the calculation faster than a processor based on the control-
flow paradigm would perform solely the calculation. The trend is that computers should 
have both control-flow and dataflow components [24].
The problem becomes more complicated when there are multiple tasks and when some 
can be executed solely on the control-flow hardware. These require different scheduling 
techniques than those used for multicore processors and cluster computing, which are 
discussed in existing research [25].

3. RESULTS

With growing capabilities in terms of the number of transistors per chip and the limited 
scalability of algorithms that multicore architectures usually execute, the question of 
whether to combine the control-flow and the dataflow hardware on the same chip die is 
reasonable. Further, the processor might also include the manycore architecture, besides 
multicore, and the dataflow on the same chip die. The research suggests the implementation 
of hybrid architectures might bring certain benefits, including faster processing, lower 
power-consumption, and less space needed for the hardware [26–27]. This is especially 
important when it comes to cluster and cloud computing. Previous research also proposes 
including the Internet of Things on the same chip die.
In addition to what has already been proposed, a hybrid processor may include asymmetric 
processors. Although all cores have the same instruction set, their microarchitectural 
properties may differ, so that there may be one core that is the fastest and the rest 
slower but of equal speed. Researchers have shown that appropriate scheduling can lead 



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

50

to a decrease in the probability of conflicts and an improvement in performance for 
transactions migration to the proposed asymmetric multiprocessor, based on the history 
of execution [28]. Their proposed solution is fully implemented in hardware. The claim 
is that it is possible to improve the performance by up to 14%. This serves as a proof that 
the hybrid processor proposed in this article can improve the performance of a similar 
hybrid processor with symmetrical multicore architecture [29], albeit for certain types of 
algorithms.
Figure 1 depicts the architecture of the proposed hybrid architecture.

Figure 1. Hybrid CPU architecture.

4. DISCUSSION

The communication between the control-flow hardware (multicore) and dataflow hardware 
in the hybrid architecture might be achieved either using existing shared cache memories or 
using the internal bus. The first approach requires special care about the timing constraints, 
as two hardware in general do not operate at the same frequency. However, it doesn’t require 
much extra hardware. The second approach requires additional control logic to cope with 
the specifics of the two hardware. This doesn’t require introducing new logic but rather 
applying the existing mechanisms for communicating between the ordinary control-flow 
processor and considerably slower main memory. The communication in this case doesn’t 
interfere with exploiting cache memories, but the drawback is that this approach requires 
more space on the chip die required for implementing the extra internal bus.
The proposed hybrid architecture can serve as a processor in a computer cluster or in a 
cloud [30], multiplying benefits with the number of processors working in parallel. Im-
portant domains of the combined control-flow and dataflow hybrid processor are the 
expected lifetime and counterfeit detection algorithms. The duration is expected to be the 



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

51

shortest of the three incorporated architectures, and possible counterfeit hybrid processor 
chips could be identified using existing statistical methods [31].

5. CONCLUSION

The improvement in computer architectures moved from incrementing the speed of pro-
cessing toward increasing core counts. Additionally, computer graphics often requires 
much more processing per time, compared to the capacity of multicore processors, re-
sulting in the introduction of so-called manycore architectures that include thousands of 
small processing elements based on the control-flow paradigm. Computer vendors that 
provide cloud infrastructure now offer dataflow processing that solves problems for pro-
cessors based on the control-flow paradigm.
As the improvement in processor frequencies has dropped and the number of transistors 
per chip has increased, it is plausible for a single chip die to include multicore, manycore, 
and dataflow hardware. This requires special scheduling techniques to cope with the new 
needs. This work suggests that combining these computing architectures on the same chip 
is possible and has benefits, including: faster processing, lower power consumption, and 
less space needed for the hardware. Additional performance gains can be achieved with 
an asymetric multicore architecture. All these results can be especially important for cloud 
infrastructure and computer clusters.
Funding: N.K. is partially supported by the School of Electrical Engineering, University of 
Belgrade, Serbia, by the Institute of Physics Belgrade, contract no. 0801-1264/1, and by the 
Ministry of Education, Science, and Technological Development of the Republic of Serbia.

INSTITUTIONAL REVIEW BOARD STATEMENT: 

Not applicable.

INFORMED CONSENT STATEMENT: 

Not applicable.

CONFLICTS OF INTEREST: 

The authors declare no conflict of interest.



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

52

REFERENCES

[1] A. Kos, V. Ranković, and S. Tomažič, “Sorting networks on Maxeler dataflow super-
computing systems,” Advances in Computers, Vol. 96, pp. 139–186, 2015.

[2] V. Ranković, A. Kos, and V. Milutinović, “Bitonic merge sort implementation on the 
maxeler dataflow supercomputing system,” The IPSI BgD Transactions on Internet Research, 
Vol. 9, No. 2, pp. 5‒10, 2013.

[3] N. Korolija, V. Milutinovic, and S. Milosevic, “Accelerating conjugate gradient solver: 
temporal versus spatial data,” The IPSI BgD Transactions on Advanced Research, Vol. 3, No. 
1, pp. 21–25, 2007.

[4] V. Milutinovic, M. Kotlar, S. Stojanovic, I. Dundic, N. Trifunovic, and Z. Babovic, 
“Implementing Neural Networks by Using the DataFlow Paradigm,” In DataFlow Super-
computing Essentials, New York: Springer Cham, 2017, pp. 3–44.

[5] V. Jelisavcic, I. Stojkovic, V. Milutinovic, and Z. Obradovic, “Fast learning of scale-free 
networks based on Cholesky factorization,” International Journal of Intelligent Systems, 
Vol. 33, No. 6, pp. 1322‒1339, 2018.

[6] M. J. Flynn, O. Mencer, V. Milutinovic, G. Rakocevic, P. Stenstrom, R. Trobec, and M. 
Valero, “Moving from petaflops to petadata,” Communications of the ACM, Vol. 56, No. 5, 
pp. 39‒42, 2013.

[7] A. Kos, S. Tomažič, J. Salom, N. Trifunovic, M. Valero, and V. Milutinovic, “New 
benchmarking methodology and programming model for big data processing,” 
International Journal of Distributed Sensor Networks, Vol. 11, No. 8, 271752, 2015. Available: 
https://journals.sagepub.com/doi/10.1155/2015/271752 

[8] N. Trifunovic, V. Milutinovic, J. Salom, and A. Kos, “Paradigm shift in big data super-
computing: dataflow vs. controlflow,” Journal of Big Data, Vol. 2, No. 1, pp. 1‒9, 2015.

[9] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad: 
a timely dataflow system,” In Proceedings of the Twenty-Fourth ACM Symposium on 
Operating Systems Principles, 2013, pp. 439‒455.

[10] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy, C. Olston, ... 
and U. Srivastava, “Building a high-level dataflow system on top of Map-Reduce: the Pig 
experience,” Proceedings of the VLDB Endowment, Vol. 2, No. 2, pp. 1414‒1425, 2009.

[11] V. Milutinović, J. Salom, N. Trifunović, and R. Giorgi, Guide to dataflow supercomputing: 
Basic Concepts, Case Studies, and a Detailed Example, Springer Cham, 2015. Available: 
https://link.springer.com/book/10.1007/978-3-319-16229-4

[12] A. R. Hurson and V. Milutinovic, Dataflow Processing. Cambridge, Massachusetts, 
United States: Academic Press, 2015.

[13] V. Milutinović, B. Furht, Z. Obradović, and N. Korolija, “Advances in high perfor-
mance computing and related issues,” Mathematical Problems in Engineering, Vol. 2016, 
2016. Available: https://downloads.hindawi.com/journals/mpe/2016/2632306.pdf 

[14] S. Stojanović, D. Bojić, and M. Bojović, “An overview of selected heterogeneous and 
reconfigurable architectures,” Advances in Computers, Vol. 96, pp. 1‒45, 2015.



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

53

[15] N. Korolija, T. Djukic, V. Milutinovic, and N. Filipovic, “Accelerating Lattice-
Boltzmann method using Maxeler dataflow approach,” The IPSI BgD Transactions on 
Internet Research, Vol. 9, No. 2, pp. 34–42, 2013. Available: http://tir.ipsitransactions.org/
indexTIR_all.php

[16] S. Stojanović, D. Bojić, and V. Milutinović, “Solving Gross Pitaevskii equation using 
dataflow paradigm,” The IPSI BgD Transactions on Internet Research, Vol. 17, 2013. 
Available: http://ipsitransactions.org/journals/papers/tir/2013july/p4.pdf 

[17] I. Stanojević, M. Kovačević, and V. Šenk, “Application of maxeler dataflow supercom-
puting to spherical code design,” In Exploring the DataFlow Supercomputing Paradigm, 
New York: Springer Cham, 2019, pp. 133‒168.

[18] N. Bežanić, J. Popović-Božović, V. Milutinović, and I. Popović, “Implementation 
of the RSA Algorithm on a DataFlow Architecture,” IPSI BgD Transactions on Internet 
Research, Vol. 9, No. 2, pp. 11‒16, 2013.

[19] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-based parallelization 
of control-flow algorithms,” Advances in Computers, Vol. 104, pp. 73‒124, 2017.

[20] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and L. Petrovic, 
“Transforming applications from the control flow to the dataflow paradigm,” In Dataflow 
Supercomputing Essentials, New York: Springer Cham, 2017, pp. 107‒129.

[21] J. Popovic, D. Bojic, and N. Korolija, “Analysis of task effort estimation accuracy based 
on use case point size,” IET Software, Vol. 9, No. 6, pp. 166‒173, 2015.

[22] N. Trifunovic, V. Milutinovic, N. Korolija, and G. Gaydadjiev, “An AppGallery for 
dataflow computing,” Journal of Big Data, Vol. 3, No. 1, pp. 1‒30, 2016.

[23] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and L. Petrovic, 
“Maxeler AppGallery Revisited,” In Dataflow Supercomputing Essentials, New York: 
Springer Cham, 2017, pp. 3‒18.

[24] A. Hurson, V. Milutinovic, “Special issue on dataflow supercomputing,” Advances in 
Computers, Vol. 96, pp. 1–234, 2015.

[25] N. Korolija, D. Bojic, A. R. Hurson, and V. Milutinovic, “A runtime job scheduling 
algorithm for cluster architectures with dataflow accelerators,” Advances in Computers, 
Vol. 126, pp. 201-245, 2022.

[26] V. Milutinović, E. S. Azer, K. Yoshimoto, G. Klimeck, M. Djordjevic, M. Kotlar, ... and 
I. Ratkovic, “The ultimate dataflow for ultimate supercomputers-on-a-chip, for scientific 
computing, geo physics, complex mathematics, and information processing,” In 2021 10th 
Mediterranean Conference on Embedded Computing (MECO), 2021, pp. 1‒6. 

[27] V. Milutinović, N. Trifunović, N. Korolija, J. Popović, and D. Bojić, “Accelerating 
program execution using hybrid control flow and dataflow architectures,” In 2017 25th 
Telecommunication Forum (TELFOR), 2017, pp. 1‒4.

[28] Z. Sustran and J. Protic, “Migration in hardware transactional memory on asymmetric 
multiprocessor,” IEEE Access, Vol. 9, pp. 69346‒69364, 2021.



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

54

[29] J. Popović, V. Jelisavčić, and N. Korolija, “Hybrid Supercomputing Architectures for 
Artificial Intelligence: Analysis of Potentials,” In 1st Serbian International Conference on 
Applied Artificial Intelligence (SICAAI), Kragujevac, Serbia, 2022.

[30] N. Korolija and A. Zamuda, “On Cloud-Supported Web-Based Integrated Develop-
ment Environment for Programming DataFlow Architectures,” In Exploring the DataFlow 
Supercomputing Paradigm, New York: Springer Cham, 2019, pp. 41‒51

[31] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y. Makris, “Recycled IC detection 
based on statistical methods,” IEEE transactions on computer-aided design of integrated 
circuits and systems, Vol. 34, No. 6, pp. 947‒960, 2015.


