
Merging Control-flow and Dataflow Architectures on a Single Chip
Nenad Korolija1* and Svetlana Štrbac-Savić1

1 School of Electrical Engineering, University of Belgrade, Serbia; nenadko@etf.rs
2 Academy of Technical and Art Applied Studies Belgrade, Serbia; svetlanas@viser.edu.rs
* Corresponding author: nenadko@etf.rs
Received: February 23, 2024 • Accepted: March 23, 2024 • Published: April 10, 2024.

CFS 2024, Vol. 3, Issue 1, pp. 33–44 
https://doi.org/10.5937/jcfs3-49392 

Original research paper

Citation: N. Korolija, S. Štrbac-Savić, “Merging Control-flow and Dataflow 
Architectures on a Single Chip,” Journal of Computer and Forensic Sciences, vol. 3, 
no. 1, pp. 33–44, 2024, https://doi.org/10.5937/jcfs3-49392. This article is an open 
access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) 4.0 International License (https://creativecommons.org/
licenses/by/4.0/).

Abstract: Computing power rises predominantly by increasing the number of cores in modern 
processors and the number of processors in cluster and cloud architectures. Along with increasing 
processing power, high-performance computing requirements also rise. The majority of the com-
puting infrastructure includes control-flow processors that are based on the von Neumann para-
digm. On the contrary, the principle of dataflow architectures is based on the data flowing through 
the already configured hardware. Recent research has proposed hybrid architectures, where both 
control-flow and dataflow hardware would exist on the same chip die. This article proposes a new 
hybrid control-flow and dataflow architecture where the control-flow hardware resembles modern 
graphical cards with thousands of cores and each GPU core has a reasonable amount of data-
flow hardware. In this way, the advantages of dataflow architecture are exploited, including faster 
processing of high-performance computing algorithms and lower power consumption, while the 
conventional problem of communicating between control-flow and dataflow architectures is min-
imized. The proposed architecture is tested by analyzing the conjugate gradient method executed 
on both control-flow and dataflow hardware. The execution of the algorithm is divided onto GPU 
cores, and the execution of repeated instructions on each GPU core is delegated to the assigned 
dataflow hardware. The results indicate that it is possible to accelerate the execution of algorithms 
using the proposed architecture.
Keywords: dataflow; control-flow; GPU; high performance computing.

1. INTRODUCTION

The computing power of computer architectures tends to rise. So does the need for com-
putation. Many high-performance computing algorithms include instructions that are 
repeatedly executed. A relatively small number of machine instructions that present the 
implementation of an algorithm may be responsible for almost all of the execution time. 
Many algorithms iterate over matrices, calculating parameters in finite volumes, e.g., in 
fluid dynamics. At the same time, the frequencies of processors cannot be increased much 
further without greatly increasing power consumption and cooling requirements. This has 
governed the development of high-performance computing architectures.
Although dataflow programming has existed for more than six decades, high-performan-
ce computing architectures that are predominantly in use are based on control-flow har-
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dware, i.e., based on the von Neumann computing model [1]. Some of the major benefits 
of control-flow architectures include their ability to execute any of the instructions defi-
ned by the architecture in any order and at any time. This way, a programmer can direct 
the architecture instruction execution, helped by the compiler, which can further optimize 
the execution of the program. The number of cores in processors rises, as it used to be the 
case with frequencies in the past. Graphical cards can include thousands of processors, 
overpowering the computational capabilities of central processing units. This has led to 
utilizing graphical card processing power, not only for computer graphic algorithms but 
also for executing algorithms that used to be executed solely on central processing units.
Contrary to the control-flow programming model, dataflow programming assumes data 
flowing through the hardware. There are software and hardware dataflow architectures. In 
the case of software dataflow architectures, the hardware is usually based on control-flow 
principles, but it takes input from the input queue as soon as it can and sends results to the 
queue dedicated for results. Multiple processing elements work in parallel. Hardware da-
taflow architectures are configured to execute a single algorithm. They are limited in terms 
of the number of instructions an algorithm may have, as the size of the dataflow hardware 
is limited. Further, in order for them to be applicable for multiple algorithms, reconfigura-
tion of the hardware is necessary. For this reason, high-performance computing dataflow 
architectures are predominantly implemented using FPGAs [2]. In some cases, a dataflow 
architecture may be produced for a single purpose, e.g., coin mining, as is the case with 
application-specific integrated circuit (ASIC).
Research available in the open literature provides evidence that dataflow architectures 
can accelerate many high-performance algorithms while reducing power consumption at 
the same time. Dataflow hardware is suitable for accelerating algorithms that include the 
uniform processing of relatively large amounts of data. Examples include simulations for 
nature-oriented civil engineering [3] and big data and machine learning algorithms [4], 
but also sorting and other methods for accelerating simulations [5–9].
The goal of this paper is to introduce the architecture and the programming model that 
achieve faster processing per number of transistors on a chip, as well as lower power con-
sumption. The proposed architecture should be based on both control-flow and dataflow 
hardware. The first one is capable of executing any instruction in any order, while the 
second one provides faster execution per transistor on the chip as well as lower power 
consumption. Further, the control-flow processor should be able to execute high-perfor-
mance code as well and communicate relatively fast with dataflow hardware.
Control-flow algorithms differ from dataflow algorithms. Certain frameworks are desi-
gned to enable conventional programmers to work with dataflow hardware without inve-
sting a considerable amount of time in learning new programming languages. Along with 
proposing a new programming model, it is necessary to provide automatic translation of a 
source code from control-flow to dataflow so that the best of both control-flow and data-
flow hardware is combined. Without automatic translation, a programmer would have to 
care about multiple constrains related to the dataflow hardware.
The following chapter, Materials and Methods, provides a more in-depth view of dataflow 
architectures potentials, as well as the definition of the proposed hybrid control-flow and 
dataflow architecture. The chapter Results presents the algorithm for matrix-vector mul-
tiplication for control-flow architectures, analyzes bottlenecks if converted directly into 
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the dataflow paradigm, provides a dataflow version that eliminates the bottlenecks, and 
provides results of potential acceleration using the hybrid architecture. The chapter Dis-
cussion briefly analyzes the acceleration and the reduction in power consumption, which 
is followed by the chapter Conclusions.

2. MATERIALS AND METHODS

This paper is based on many assumptions that are built on top of the existing control-flow 
and dataflow infrastructure, as well as available programming models. The first assumpti-
on is that the dataflow hardware can run instructions spread over the surface instead of 
executing them in order, as is the case with control-flow hardware. This brings better per-
formance in terms of the number of instructions that can be executed in parallel, but the 
dataflow clock cycle is around 10 times slower compared to the control-flow hardware.
One of the most important assumptions that is made is that the surface of a chip die 
should be comparable to that of any hardware, i.e., the suggested architecture should not 
increase the number of transistors needed on a chip drastically.

Figure 1. Proposed computer architecture.

The dataflow hardware needs to be reconfigured before it is used. The initialization of data-
flow hardware is nearly proportional to its size multiplied by the speed of communication 
between control-flow and dataflow hardware. If the dataflow hardware is split into pieces 
and spread over the hybrid control-flow and dataflow chip die, the reconfiguring speed can 
be faster. The speed of reconfiguring each portion of dataflow hardware is estimated to be 
faster by a factor that is equal to the number of such pieces available on the chip. In cases 
where there are thousands of pieces of dataflow hardware, we can often neglect dataflow 
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reconfiguration time, as it is often treated as a background job. This paper assumes a hybrid 
architecture consisting of many pieces of dataflow hardware available on each control-flow 
core similar to those from graphics processing units (GPU). This is depicted in Figure 1. 
Control-flow processors are marked with CF, and dataflow with DF. CPUs represent a num-
ber of CPUs that have greater capabilities than those marked with CF and are responsible 
for synchronizing algorithm execution. These are out of the scope of this paper.
The proposed architecture is judged based on a GPU-executing high-performance com-
puting algorithm with the following characteristics:

1) The processing is performed over the 3D space, divided into finite volumes. The 
proposed architecture is not limited to this type of processing. The principle is general and 
applicable to many high-performance computing algorithms.

2) The new state of any elementary volume is calculated based on the previous one. 
The important aspect is that the new state of any of the elementary volumes depends solely 
on the previous states of the elementary volume and surrounding elementary volumes.

3) In each iteration over the matrix that presents the simulation volume, the current 
state is updated to the new one after each elementary volume is processed.

4) The algorithm is run until the change of state is smaller than a given relatively small 
amount of change between consecutive states or a given number of iterations.
The algorithm execution consists of a processing matrix divided onto GPU cores. Each 
core is responsible for a portion of the matrix. The processing portion of a matrix requires 
iterating over a subset of matrix elements, where elements can be processed indepen-
dently of each other. Each iteration can be executed using the control-flow and dataflow 
hardware.
High-performance computing requirements direct the development of the underlying 
hardware [10]. Various algorithms require combining control-flow and dataflow hardwa-
re so that the execution time becomes lower than using only a single type of hardware 
[11]. Although algorithms can be accelerated using the dataflow hardware, programming 
dataflow hardware requires more effort compared to programming control-flow hardware 
[12], so automatic translation is needed to enable efficient use of the proposed hardwa-
re. Much work has been performed to support programming dataflow hardware. Some 
of them focus on the availability of dataflow hardware in the cloud as well as providing 
an integrated development environment for programming [13]. Others tried to provide 
automatic parallelization of control-flow algorithms onto the dataflow hardware [14, 15]. 
Many researchers and programmers let others utilize their source code that is left on a 
common repository [16–18]. When dataflow hardware is separated from the control-flow 
hardware, the distance between them affects performance [19]. Therefore, it is beneficial 
to bring these two types of hardware closer to each other in order to utilize both hardware 
for the execution of a single algorithm. The architecture of cache memory needs to be paid 
special attention to if the dataflow hardware needs to lie closer to the GPU cores [20, 21]. 
Cache memories are one of the most promising solutions for the communication between 
these two types of hardware.
Researchers have been working on defining hybrid architectures that exploit benefits from 
both control-flow and dataflow architectures [22, 23], where a control-flow architecture is 
responsible for preparing the data and orchestrating the processing on the dataflow hardwa-
re. In some cases, the best architectures of both types are combined on a single chip [24, 25].
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The work described in the open literature shows that algorithms can benefit from perfor-
mance improvements using hybrid architectures [27–28]. However, the acceleration requ-
ires special job scheduling algorithms that combine both control-flow and dataflow jobs 
[29], as the scheduling parameters differ substantially from those of any of the two types 
of architectures. This is especially important when it comes to cloud processing using 
hybrid architectures [30]. With the raising possibilities introduced by hybrid architectu-
res, the distance between control-flow and dataflow hardware is reduced, allowing for the 
wide range of high-performance computing algorithms to be accelerated by splitting each 
algorithm on relatively small chunks of code, where it would still be justifiable to execute 
them on different architectures and cover the communication costs [31]. There is a pro-
blem with the appearance of recycled integrated circuits on the market. Control-flow, da-
taflow, and hybrid architectures exhibit the same behavior regarding the aging of the chip, 
making it possible for any of these types of chips to be detected as recycled using existing 
methods [32, 33].
The control-flow architecture has the advantage over dataflow architectures in that it can 
execute any of the instructions defined by the architecture at any moment. On the other 
hand, dataflow provides faster processing for algorithms with a relatively high amount of 
repetition in instructions that are executed over and over again, requiring less energy for 
the computation at the same time. Existing hybrid architectures usually propose integra-
ting control-flow and dataflow hardware by placing them close to each other or utilizing 
them in clusters or computer clouds.
In this paper, the hybrid architecture is considered, where each relatively small core, si-
milar to a GPU core, is assigned a relatively small amount of dataflow hardware. The goal 
behind this idea is to enable faster communication between control-flow and dataflow 
hardware by a factor of a thousand or more. The downside of the proposed approach is 
that each dataflow hardware can execute a relatively small amount of instructions. The 
proposed architecture and the programming model can be treated as the Implantation, 
where a new architecture is invented by implanting a dataflow resource into existing grap-
hics processing units so that the characteristics of the new architecture overcome the cha-
racteristics of any of the old architectures [34].

3. RESULTS

The proposed hybrid architecture is compared to the control-flow architecture using the 
conjugate gradient algorithm [35]. This algorithm contentiously performs certain matrix 
and vector operations. The most time-consuming one is matrix-vector multiplication. The 
goal of this research is to demonstrate the ability of dataflow hardware to accelerate the 
execution of algorithms by placing the most time-consuming portions of the code onto 
the dataflow hardware. Results are tested for different values of the parameter SIZE from 
Algorithm 1.

If we analyze the statement that calculates the resulting elements of matrix vector multipli-
cation, we can see only three arithmetic statements: two multiplications and one addition. 
Theoretically, we can calculate the possibilities of dataflow hardware to accelerate the cal-
culation of a matrix-vector product. Let’s assume that around 1000 transistors are needed 
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on average for implementing a single arithmetic operation and that a processor has one 
billion transistors and 3300 cores. This means that the dataflow hardware processing sho-
uld be able to execute 100 cores in parallel. As it is 10 times slower than the control-flow 
hardware, it would be only 10 times faster. However, practically, dataflow hardware in each 
clock cycle executes three operations, while control-flow executes only a single one, but 10 
times faster. Therefore, dataflow hardware is expected to be slower. This is an important 
conclusion, supporting the evidence that dataflow programming requires more sophisti-
cated approaches in order to produce the desired acceleration.

for(int j = 0; j < SIZE; j++){
 out[j] = 0;
 for(int i = 0; i < SIZE; i++)
  out[j] += alpha * A(j, i) * b(i);
}

Algorithm 1. Matrix-vector multiplication.

One way to solve the problem of a relatively small number of machine instructions per 
iteration is to perform loop unwinding. Loop unwinding represents a method to conse-
cutively execute statements of a loop, eliminating the need for a loop while the results of 
execution remain unchanged. This is possible for loops with a known number of iterati-
ons. This process creates more instructions that can be run in parallel.
Another important aspect of dataflow programming is that iterations should be indepen-
dent from each other in order to avoid stalls in execution. Algorithm 1 calculates in the 
inner for loop the value of a single element out[j] in each consecutive iteration. This fact 
can present a problem, as one could have to wait for all three operations to be finished 
before being able to sum out[j] with the result. More precisely, in this particular case, it 
would be possible to perform them in parallel in this scenario since out[j] is only written 
to and in a single dataflow clock cycle. This means that calculating two products can be 
performed in parallel for successive iterations, and the appropriate result should be stored 
in the appropriate out[j]. This requires that additional buffers may be needed for the im-
plementation so that two consecutive iterations would not affect each other.
More appropriate source code would be obtained if rearranging of for loops is performed, 
as shown in Algorithm 2, because dependencies between consecutive statements are eli-
minated.

int j;
for(j = 0; j < SIZE; j++)
 out[j] = 0;
for(int i = 0; i < SIZE; i++){
 for(j = 0; j < SIZE; j++)
  out[j] += alpha * A(j, i) * b(i);
}

Algorithm 2. Rearranged matrix-vector multiplication
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After rearranging the computation, we can perform loop unwinding, as shown in Algori-
thm 3. The inner for loop has disappeared, as it is replaced with consecutive statements, 
one for each iteration.

int j;
for(j = 0; j < SIZE; j++)
 out[j] = 0;
for(int i = 0; i < SIZE; i++){
 out[0] += alpha * A(0, i) * b(i);
 out[1] += alpha * A(1, i) * b(i);
 out[2] += alpha * A(2, i) * b(i);
 ...
 out[SIZE-1] += alpha * A(SIZE-1, i) * b(i);
}

Algorithm 3. Unwound rearranged matrix-vector multiplication.

At this stage, we could estimate the acceleration of the dataflow hardware for performing 
matrix-vector multiplication. Formulas 1–4 show how many cycles are needed for a GPU 
core and the dataflow hardware assigned to it to execute an inner for loop (unwound in 
the case of dataflow hardware), where tCF represents the time needed for a GPU core to 
execute the portion of the algorithm, tCF the time needed for dataflow hardware to exe-
cute the same portion of algorithm, tCycleCF and tCycleDF are the time of a clock cycle 
of dataflow and control-flow hardware, nOperationsCF is the number of statements in the 
source code if each arithmetic operation is considered a separate statement, and nInstru-
ctionsDF is the number of instructions that dataflow hardware has to execute.

tCF = tCycleCF * nCyclesCF   (1)
tDF = tCycleDF * nCyclesDF   (2)
nOperationsCF = 5 * SIZE   (3)
nCyclesDF = nInstructionsDF = SIZE  (4)

However, in the case of control-flow hardware, a value of A(j, i) cannot be fetched in a 
single cycle. More precisely, a position in a memory can be determined as the sum of the 
beginning address of matrix A and a multiplication of j and SIZE increased by i. If fetc-
hing a single value from a memory takes one cycle, a total of four cycles are needed for 
fetching A, j, i, and SIZE. Further, an additional three cycles are needed for the arithmetic 
operations involved, and an additional six for storing and reading the temporary values 
of multiplying j and SIZE, adding the product to i, multiplying the address offset with the 
size of a word in the number of bytes, and summing the previous sum with the beginning 
memory address of A. Fetching b(i) takes at least four cycles. This means that a minimum 
of 21 cycles is needed for control-flow hardware to execute the C++ statement that in-
volves A(j, i). Similarly, another three clock cycles are needed for increasing i by one, three 
for checking whether the condition of the inner for loop is met, and two for jumping on 
the first statement of the for loop if the condition is met. In total, there are at least 29 cycles 
needed for a single iteration, leading to Formula 5.

nCyclesCF = 29 * SIZE     (5)
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From formulas 1 and 2, the acceleration factor of the dataflow hardware is 2.9, keeping in 
mind that the tCycleCF is approximately 10 times lower than the tCycleDF. Formulas 6–7 
show how many cycles are needed for a GPU core and the dataflow hardware assigned to 
it to execute a matrix-vector product.

nCyclesDF = SIZE * (SIZE + 2)   (6)
nCyclesCF = (29 * SIZE + 2) * SIZE  (7)

The total acceleration factor of the dataflow hardware can be calculated as a factor between 
nCyclesDF and nCyclesCF, multiplied by 10. Figure 2 depicts the acceleration factor of da-
taflow hardware for the parameter SIZE in a range from 1 to 100. The acceleration tends to 
reach the value of 2.9, as the SIZE rises.

Figure 2. Acceleration factor of the dataflow hardware  
for matrix-vector multiplication.

4. DISCUSSION

As the time needed for the dataflow hardware is lower by a factor higher than two, we can 
assume that dividing the available transistors on the chip into control-flow and dataflow 
hardware would result in accelerating the algorithm. At the same time, the power con-
sumption is expected to be lower as the dataflow hardware operates at a lower frequency 
while the total algorithm execution time is shorter.
Further research is needed for the development of the proposed hybrid control-flow and 
dataflow hardware. The precise timing constraints should be evaluated based on the im-
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plemented architecture. The industry can benefit from merging control-flow and dataflow 
paradigms, but the problem of converting control-flow to dataflow algorithms remains. 
As already stated, there are methods to automate this process, but further development of 
these methods should be directed toward increased use of dataflow architectures.

5. CONCLUSIONS

This paper proposes the use of both control-flow and dataflow hardware on a single chip 
die by spreading the dataflow hardware over the chip so that each core, similar to GPU 
cores, can have separate dataflow hardware. The proposed algorithm is tested analytically 
using the conjugate-gradient method, whose most time-consuming part in total executi-
on time is related to matrix-vector multiplication. The results indicate that the proposed 
architecture can be effectively used for accelerating the execution of certain high-per-
formance computing algorithms while reducing total power consumption. Future work 
should show the possibility of utilizing a hybrid processor that combines GPU cores that 
do not have dataflow hardware assigned to them and GPU cores with dataflow hardware. 
This requires more sophisticated scheduling algorithms to be developed.
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