DIVERING PATHS TO ORGANIZATIONAL RESILIENCE: THE ROLE OF DYNAMIC MANAGERIAL CAPABILITIES, BENEVOLENT LEADERSHIP, ORGANIZATIONAL UNLEARNING AND PARADOXICAL THINKING

Tomasz Ingram*

The University of Economics in Katowice, Faculty of Economics, Poland

Abstract: This paper investigates the determinants of organizational resilience, defined as the capacity to effectively counter and respond to external threats through organizational processes and strategic posture, and to recover from unexpected crises. It examines the role of dynamic managerial capabilities, leading to benevolent leadership, organizational ability to unlearn ineffective practices and processes, and handling strategic paradoxes, which collectively enable effective strategies for countering unexpected adversities. It argues that environmental dynamism (changeability) significantly influences the effectiveness of the aforementioned determinants of organizational resilience. Drawing on data collected from 379 Polish organizations between September and November 2023, the study tests these relationships using structural equation modeling (SEM). To further explore these complex relationships, fuzzy set qualitative comparative analysis (FsQCA) is employed to validate the SEM results. The findings indicate that dynamic managerial capabilities, coupled with benevolent leadership and organizational unlearning, contribute to increased organizational resilience, particularly in dynamic environments. However, paradoxical thinking has a minor inhibitory effect on organizational resilience. FsQCA analyses corroborate the SEM results but underscore the importance of deeper consideration of complexity in management studies.

Keywords: Organizational resilience, dynamic managerial capabilities, structural equation modeling, fuzzy set qualitative comparative analysis.

1. INTRODUCTION

Organizational resilience, often defined as an organization's capacity to effectively manage and overcome adversities (Weick, 1993, 2024), has garnered significant attention from both practitioners and scholars alike (Williams et al., 2021). The growing prevalence of external and internal challenges and disruptions has fueled interest in this concept (Danes et al., 2009; Williams & Shepherd, 2016; Clément & Rivera, 2017;). In this paper, organizational resilience is conceptualized following Duchek's (2020) framework, which views it as the organizational resilience.
ability to anticipate potential threats, navigate unforeseen adversities effectively, and adapt to evolving conditions.

Irrespective of an organization's size or tenure, there's a concerted effort to cultivate capabilities geared towards weathering crises stemming from unpredictable environmental dynamics. While the manifestations of organizational resilience are observable during disruptions, there exists ongoing debate regarding the determinants of these critical organizational capabilities.

Organizational resilience may stem from various preconditions, yet researchers diverge in their conclusions regarding the organizational contexts that foster resilience. Consequently, this paper aims to address this research gap by examining how dynamic managerial capabilities, benevolent leadership, organizational unlearning, and paradoxical thinking, within the context of environmental dynamism, interact and influence organizational resilience.

To achieve this objective, data from 379 Polish organizations are analyzed using structural equation modeling (SEM). To ensure the robustness of the findings, SEM results are cross-validated with those obtained through fuzzy set qualitative comparative analysis. The ensuing discussion encompasses hypotheses derived from a literature review, methodological considerations, and implications, thus paving the way for future research directions.

2. LITERATURE REVIEW AND HYPOTHESES

2.1. Organizational resilience – the rise of interest

The concept of organizational resilience has surged in prominence in recent decades. Initially rooted in fields such as psychology and disaster management, the notion gradually permeated organizational studies, driven by a growing recognition of the need for businesses to navigate an increasingly complex and turbulent environment. One of the primary catalysts for the rise of organizational resilience is the frequency and severity of disruptions faced by businesses worldwide (Hillman & Guenther, 2021). These disruptions span a spectrum of sources, including natural disasters, economic downturns, geopolitical instability, technological advancements, and pandemics (Linnenluecke, 2017). The escalating interconnectedness of global economies and markets has amplified the ripple effects of such disruptions, underscoring the imperative for organizations to fortify their resilience.

Simultaneously, advances in technology and communication have accelerated the pace of change, fostering a dynamic and unpredictable operating environment (Vrontis et al., 2022). Organizations are confronted with rapid shifts in consumer preferences, market dynamics, regulatory frameworks, and competitive landscapes. In current conditions, the ability to anticipate, adapt, and recover from shocks is of a great importance (Andersson et al., 2019).

Scholars and practitioners have responded to these imperatives by delving deep into the topic, seeking to unveil its antecedents, manifestations, and implications (Duchek, 2020). This interest has spawned a rich body of literature, encompassing diverse disciplines such as management, strategy, psychology, or sociology (Hepfer & Lawrence, 2022). Researchers have developed frameworks, models, and tools to conceptualize, measure, and enhance organizational resilience, offering valuable insights to guide managerial practice (Chen et al., 2021).

In sum, the rise of the notion of organizational resilience reflects a fundamental shift in how organizations perceive and respond to uncertainty and adversity. It emphasizes the recognition that resilience is not merely a desirable trait but a strategic imperative for survival and success in today’s turbulent business landscape. However, the most important question remains, so far, unanswered. How does other organizational properties, strategies, and
processes enable organization to become resilient. This is the question about determinants of this important phenomenon.

2.2. On (numerous) determinants of organizational resilience

Pal et al. (2014) prepared a long list of organizational resilience enablers. In the paper, I focus on just a few of them – namely dynamic managerial competencies, as swift leaders maneuver challenges effectively enabling the preparation of organization; leadership, which enables employees in making effective decision-making under pressure, organizational learning, as it creates the foundation for resilience to occur (Weick, 1993); and managing paradoxes by appropriate posture – while the increasing complexity requires effective balancing of competing tensions and contradictions (Hargrave & Van de Ven, 2017).

Firstly, dynamic managerial capabilities play a pivotal role in shaping organizational resilience by equipping leaders with the agility, foresight, and adaptability needed to navigate turbulent environments effectively (Helfat & Martin, 2015). These capabilities encompass a spectrum of competencies, including strategic visioning, decision-making agility, change leadership, and resource allocation acumen. Leaders adept in dynamic managerial capabilities exhibit a heightened capacity to anticipate emerging threats, seize opportunities, and mobilize organizational resources swiftly in response to changing circumstances. By fostering a culture of innovation, learning, and experimentation, these leaders cultivate organizational agility, enabling their teams to pivot rapidly in the face of disruptions. Moreover, dynamic managerial capabilities facilitate the alignment of organizational strategy with external realities, ensuring that businesses remain responsive and resilient amidst shifting market dynamics and competitive pressures (Huynh et al., 2022). In essence, by fostering a proactive and adaptive leadership ethos, dynamic managerial capabilities empower organizations to thrive in the landscape characterized by uncertainty and complexity. On this basis I formulate the first hypothesis:

H1: Dynamic managerial capabilities are positively linked to organizational resilience.

Dynamic managerial capabilities are intertwined with leadership, and it may be argued, that benevolent leadership, as leaders with dynamic capabilities often demonstrate empathy, compassion, and a genuine concern for the well-being and development of their employees, fostering a supportive and nurturing work environment (Karakas & Sarigollu, 2012). This benevolent leadership style, coupled with dynamic managerial capabilities, fosters a culture of trust, collaboration, and psychological safety within the organization, which in turn enhances employee morale, engagement, and commitment. As a result, employees are more likely to demonstrate resilience in the face of adversity, proactively problem-solve, and adapt to changing circumstances, ultimately bolstering the overall resilience of the organization (Nonaka et al., 2016). This leads to the following two hypotheses:

H2: Benevolent leadership is positively linked to organizational resilience, and

H3: Benevolent leadership mediates the relationship between dynamic managerial capabilities and organizational resilience.

Further, dynamic managerial capabilities stimulate organizational unlearning, perceived as abandoning ineffective practices, routines and processes to create a space for new solutions (Tsang & Zahra, 2008), by encouraging a culture of openness to new perspectives, experimentation, and reflection, which prompts individuals and teams to challenge existing assumptions, routines, and mental models. This process of organizational unlearning facilitated by dynamic managerial capabilities enables the organization to shed obsolete practices, beliefs, and strategies, thereby enhancing its ability to adapt to evolving conditions and respond
effectively to disruptions, ultimately strengthening its resilience in the face of uncertainty and change. This leads to the following two hypotheses:

H4: Organizational unlearning is positively linked to organizational resilience, and

H5: Organizational unlearning mediates the relationship between dynamic managerial capabilities and organizational resilience.

Finally, managers encompassing dynamic managerial competencies are able to encourage employees to think differently—look at the problem from different perspectives. Paradoxical thinking, understood as ability to perceive the reality from different standpoints, balancing contradictive tensions, enable organization to become more resilient in the face of crisis (Förster et al., 2022). This leads to the next two hypotheses:

H6: Paradoxical thinking is positively linked to organizational resilience, and

H7: Paradoxical thinking mediates the relationship between dynamic managerial capabilities and organizational resilience.

Finally, organizations do not operate in a vacuum. Since the dynamism of the environment pose significant challenges on the everyday’s life, it may be assumed that the dynamism of the environment effectively changes—moderates—the effectiveness of organizational endeavours, and affects the company handles adversities and crises (Do et al., 2022). This enables formulation of a final hypothesis:

H8: Environmental dynamism moderates relationships between benevolent leadership, organizational unlearning, paradoxical thinking and organizational resilience.

3. METHODOLOGY

3.1. Sample characteristics

To test the research hypotheses, I employed a quantitative research approach based on empirical data gathered from companies’ representatives. In the first step, a questionnaire reflecting the tested variables was created (the research model was operationalized), which was later distributed to a random sample of 1000 companies selected from a database containing 10,009 entries in September 2023. Simultaneously, a second sample of the same size was randomly selected from the database. Questionnaires were sent to the representatives of the first sample. If the selected company from the first sample did not agree to participate in the study, the questionnaire was then sent to a company from the second sample marked with the same number. In this manner, 402 questionnaires were gathered, from which 379 were included in the final sample. Questionnaires with missing data or assessed as non-reliable (for example, containing the same answers for all the questions) were removed from the sample. This yielded a rather unimpressive effective response rate of nearly 20%, which is consistent with other studies.

In the sample, there were 72 trading, 193 service, 35 production, and 79 mixed-type companies. 100 respondents declared that their companies operate locally, 71 had regional reach, 130 were reaching customers nationally (in Poland), and there were also 63 international and 15 global companies. The median size of the studied organizations equaled 14, with a mean equal to 241 and a standard deviation of 1155. The smallest company employed just 2 people, while the largest employed more than 17,000, indicating a highly skewed sample (skewness = 10.069) and kurtosis equaled 129, signifying that the distribution of the data is non-normal.

Considering the age of organizations, the median equaled 16 with a mean equal to 19.91 years, and a standard deviation of 18.3. Skewness equaled 3.81 with kurtosis of 23.93. 178 companies were family-owned, and 201 were non-family businesses.
3.2. Measures

The main dependent variable, organizational resilience, was measured using the questionnaire proposed by Orth and Schuldis (2021), composed of 8 items measured on a 7-point Likert scale. Cronbach’s alpha for the scale equaled 0.873. Exploratory factor analysis (KMO = 0.880, Bartlett’s test: chi-square = 1351.35 with 28 degrees of freedom, p < 0.001) revealed that organizational resilience is a unidimensional construct, and one factor explains roughly 54% of the variance of all the items.

Dynamic managerial capabilities were measured using a 6-item research tool measured on a 7-point Likert scale, previously developed and tested by Schilke (2014). Cronbach’s alpha equaled 0.837, but one item reflecting the diversification of staff in a company was removed after the analysis. Its removal improved the value of alpha to a more respectable level of 0.876. Exploratory factor analysis (KMO = 0.849, Bartlett’s test: chi-square = 937.86, with 10 degrees of freedom, and p < 0.001) revealed that one factor explains over 67% of the items’ variance.

Benevolent leadership was operationalized following the framework proposed by Cheng et al. (2004). The scale, comprising 11 items, demonstrated high internal consistency (Cronbach’s alpha = 0.946) and constituted a unidimensional construct (KMO = 0.940; approx. chi-square = 3453.235 with 55 degrees of freedom, p < 0.001), explaining over 66% of the cumulative variance of the items.

Organizational unlearning was measured using the scale developed by Lyu et al. (2020), composed of 6 items measured on a 7-point Likert scale. Cronbach’s alpha for the scale accounted for 0.899, signifying high reliability of the construct. Exploratory factor analysis (KMO = 0.865, Bartlett’s test: chi-square = 1368, with 15 degrees of freedom, p < 0.001) showed that organizational unlearning is a unidimensional construct, and one factor explains over 66.5% of the variance of all the items.

Paradoxes were measured using the scale previously created by Ingram et al. (2016), composed of 6 items measured on a 7-point Likert scale. Cronbach’s alpha for the scale was not satisfactory, equalling 0.642. However, after removing the first item, the value of the coefficient increased to 0.685 – still below the 0.7 cut-off line, but such values can be cautiously included in the research. Exploratory factor analysis for the scale revealed it is a unidimensional construct, with one factor explaining 45% of the cumulative variance.

Finally, environmental dynamism was measured using a 5-item long scale developed and tested by Kwiotkowska (2018). Cronbach’s alpha for the scale equaled 0.780, and exploratory factor analysis revealed that a single construct explains nearly 54% of the cumulative variance of all the items (KMO = 0.747, Bartlett’s test: chi-square = 540.68, with 10 degrees of freedom, p-value < 0.001).

4. RESEARCH RESULTS

The initial phase of the analysis involved examining a model consisting of six components: organizational resilience as the dependent variable, dynamic managerial capabilities as the primary independent variable, and paradoxical thinking, organizational unlearning, and benevolent leadership as mediators, with environmental dynamism serving as a moderator. This phase aimed to investigate correlations between the variables. Spearman’s rank correlation coefficients, along with descriptive statistics, were calculated for this purpose. Metavariables were computed as the mean of all the items comprising the variable. The findings are summarized in Table 1.
Spearman’s rank correlations were chosen due to the non-normal distribution of the studied variables, and single-tailed p-values were used for calculating correlations. Examining the correlation table reveals relatively high relationships between organizational resilience and dynamic managerial capabilities (ρ = 0.594, p < 0.01), benevolent leadership (ρ = 0.589, p < 0.01), organizational unlearning (ρ = 0.696, p < 0.01), and environmental dynamism (ρ = 0.418, p < 0.01). Conversely, the correlation between organizational resilience and paradoxical thinking was insignificant (ρ = -0.073).

Dynamic managerial capabilities significantly correlate with benevolent leadership (ρ = 0.343, p < 0.01), organizational unlearning (ρ = 0.469, p < 0.01), and environmental dynamism to a lesser extent (ρ = 0.183, p < 0.01). The correlation with paradoxical thinking is significant, albeit with a negative sign (ρ = -0.089, p < 0.05).

Benevolent leadership exhibits a strong correlation with organizational unlearning (ρ = 0.490, p < 0.01) and a significant correlation with environmental dynamism (ρ = 0.308, p < 0.01). However, it does not significantly correlate with paradoxical thinking.

Organizational unlearning does not significantly correlate with paradoxical thinking, but it does correlate with environmental dynamism (ρ = 0.274, p < 0.01). Conversely, paradoxical thinking demonstrates negative correlations with all variables except for its relationship with environmental dynamism (ρ = 0.108, p < 0.05), albeit relatively small.

Table 2. Linear regression coefficients and multicollinearity statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized parameters</th>
<th>Standard error</th>
<th>Standardized parameters (Beta)</th>
<th>t-value</th>
<th>p-value</th>
<th>Tolerance</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.389</td>
<td>0.229</td>
<td>1.696</td>
<td>0.091</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benevolent leadership</td>
<td>0.183</td>
<td>0.026</td>
<td>0.246</td>
<td>6.988</td>
<td><0.001</td>
<td>0.693</td>
<td>1.442</td>
</tr>
<tr>
<td>Organizational unlearning</td>
<td>0.34</td>
<td>0.032</td>
<td>0.394</td>
<td>10.802</td>
<td><0.001</td>
<td>0.646</td>
<td>1.547</td>
</tr>
<tr>
<td>Dynamic capabilities</td>
<td>0.29</td>
<td>0.034</td>
<td>0.288</td>
<td>8.51</td>
<td><0.001</td>
<td>0.75</td>
<td>1.333</td>
</tr>
<tr>
<td>Paradoxical thinking</td>
<td>-0.031</td>
<td>0.042</td>
<td>-0.022</td>
<td>-0.725</td>
<td>0.469</td>
<td>0.974</td>
<td>1.027</td>
</tr>
<tr>
<td>Environmental dynamism</td>
<td>0.178</td>
<td>0.029</td>
<td>0.191</td>
<td>6.109</td>
<td><0.001</td>
<td>0.875</td>
<td>1.142</td>
</tr>
</tbody>
</table>

Dependent variable: organizational resilience
The size and age of organizations generally exhibit weak to moderate correlations with other variables, typically negative, indicating that older and larger organizations tend to have lower levels of other variables. These two variables covary significantly in the model ($\rho = 0.521$, $p < 0.01$). The relatively high correlation levels may indicate autocorrelation issues in further analyses. To address this concern, a VIF analysis was conducted in the next step. Initially, regression analyses with VIF statistics were calculated, with organizational resilience as the main dependent variable and all other variables as independent ones. Control variables were omitted in this analysis. Table 2 presents the results of the VIF analysis (and parameter estimates).

As indicated in Table 2, VIF statistics do not exceed 4, which is commonly perceived as an indicator of multicollinearity between variables. Additionally, the coefficients in the table exhibit the same direction (the same sign) as the relationships indicated in the correlation matrix, suggesting that the probability of multicollinearity is low.

Therefore, in the subsequent steps, I conducted structural equation modeling using Mplus software. Initially, following the recommendations of Boemelburg et al. (2023), I assessed the internal consistency of the model using confirmatory factor analysis. At this stage, I specified the internal structure of latent variables (all variables in the model were treated as latent ones). The estimation results are presented in Figure 1.

As illustrated in the model presented in Figure 1, most of the factor loadings are statistically significant. Moreover, the model demonstrates a reasonable fit with RMSEA = 0.046, CFI = 0.922, TLI = 0.914, SRMR = 0.066, and Akaike AIC = 42,610.266. These results suggest that the proposed structure aligns well with the data and supports further analyses. However, due to poor factor loadings, item “env1” with a value of 0.36 was excluded from subsequent analyses.
In the following step, a structural equation model was estimated using a random type of analysis with MLR estimator and integration algorithm, allowing for testing of the mediation and moderation effects between latent variables. In this type of analysis, no fit indices are provided, and thus, the model's quality is evaluated using comparative measures, such as Akaike AIC, compared to the base model. Lower AIC levels indicate a better fit, while significantly higher AIC levels suggest a poor fit of the model to the data. To enhance clarity, a graphical representation of the model was created using the draw.io web application. The estimation results are presented in Figure 2.

![Figure 2. Structural model of relationships between dynamic managerial capabilities and organizational resilience with mediation effect of benevolent leadership, organizational unlearning, and paradoxical thinking and moderating effect of environmental dynamism](image)

Legend: Above lines standardized parameters, standard errors and p-values are provided. Green color denotes significant relationships, orange color – relationships statistically insignificant. For a better clarity structural loadings are removed.

The model presented in Figure 2 exhibited relatively good fit, with Akaike AIC = 42,653.522. In comparison with the Akaike of the structural model presented in Figure 1, it is slightly less well-fitted, with the change accounting for 41 points.

To summarize the analyses, as depicted in Figure 2, dynamic managerial capabilities foster organizational resilience both directly (standardized coefficient = 0.318) and indirectly, through benevolent leadership (mediation effect of 0.088) and organizational unlearning (mediation effect = 0.177). Dynamic managerial capabilities significantly influence all three mediating variables, most prominently benevolent leadership (standardized coefficient = 0.452) and organizational unlearning (standardized coefficient = 0.528), while also exerting a negative influence on paradoxical thinking (standardized coefficient = -0.179).

Both benevolent leadership (standardized coefficient = 0.251) and organizational unlearning (standardized coefficient = 0.431) significantly influence organizational resilience, whereas paradoxical thinking shows no significant relationship with organizational resilience (standardized coefficient = -0.071).
In the estimated model, environmental dynamism does not significantly moderate the relationships between benevolent leadership, organizational unlearning, paradoxical thinking, and organizational resilience. However, it does strengthen the level of organizational resilience (standardized coefficient = 0.209).

5. ROBUSTNESS CHECKS

To ensure the robustness of the results, I chose to specify the model differently. Embracing a configurational approach to management, I posited that various configurations of dynamic managerial capabilities, organizational unlearning, benevolent leadership, paradoxical thinking, and environmental dynamism could lead to increased organizational resilience. From this configurational perspective, I hypothesized that different combinations of determinants might foster the development of organizational resilience capability within the organization. Configurational approaches in management studies are predicated on causal asymmetry, where a particular outcome may result from specific conditions, and the absence of the outcome may stem from a very different set of conditions. Hence, I opted to utilize fsQCA (see Fiss, 2011) to test this assumption. Accordingly, I employed fuzzy set qualitative comparative analysis to identify configurations of factors associated with both increased and decreased organizational resilience. In conducting the analyses, I adhered to the recommendations of Pappas & Woodside (2021).

In the initial step, the data (metavariables used to calculate correlations) were transformed into fuzzy sets using a calibration method with values ranging from –1 to 1. Statistics utilized for data calibration are provided in Table 3.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benevolent leadership</th>
<th>Organizational unlearning</th>
<th>Organizational resilience</th>
<th>Dynamic managerial capabilities</th>
<th>Environmental dynamism</th>
<th>Paradoxical thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th percentile</td>
<td>2.545</td>
<td>3.333</td>
<td>3.75</td>
<td>3.333</td>
<td>3.2</td>
<td>2</td>
</tr>
<tr>
<td>50th percentile</td>
<td>4.72</td>
<td>4.9</td>
<td>5.12</td>
<td>4.9</td>
<td>4.7</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Calibration measures play a crucial role in assessing the goodness of model fit. Thanks to the calibration procedure, I was able to harmonize data collected across different Likert scales. All computations were conducted using dedicated software – FSQCA, available from https://sites.socsci.uci.edu/~cragin/fsQCA/software.shtml.

Additionally, I conducted a truth table analysis with a frequency cutoff set at 5. This approach resulted in the removal of approximately 5 percent of all observations, eliminating configurations that were rarely present from the analysis. The outcomes of the analysis encompass complex, parsimonious, and intermediate combinations of configurations.

A complex solution represents a comprehensive set of conditions leading to a specific outcome. However, these conditions are sufficient but not necessary for the outcome to occur. Consequently, researchers typically focus on two other solutions provided by the program.

The parsimonious solution comprises combinations of conditions that are deemed necessary for a particular outcome to manifest and is part of the intermediate solution, which is commonly regarded as the most relevant set of significant conditions for the outcome to occur. Typically, results are presented with intermediate solutions, clearly indicating (often highlighted) the parsimonious components contained within. The parsimonious and
intermediate solutions for both high and low levels of organizational resilience are detailed in Tables 4 and 5, respectively.

Table 4. Intermediate configurations leading to high organizational resilience

<table>
<thead>
<tr>
<th>Intermediate solution (with parsimonious solution highlighted)</th>
<th>raw coverage</th>
<th>unique coverage</th>
<th>consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BLead * OUnlearn</td>
<td>0.70845</td>
<td>0.0552464</td>
<td>0.885788</td>
</tr>
<tr>
<td>2 OUnlearn * DynCap</td>
<td>0.715293</td>
<td>0.0669392</td>
<td>0.894173</td>
</tr>
<tr>
<td>3 OUnlearn * ~ParTh * Env_D</td>
<td>0.468215</td>
<td>0.0095479</td>
<td>0.909091</td>
</tr>
<tr>
<td>4 DynCap * ~ParTh * Env_D</td>
<td>0.449477</td>
<td>0.0077610</td>
<td>0.893797</td>
</tr>
<tr>
<td>5 Blead * DynCap * Env_D</td>
<td>0.556497</td>
<td>0.0199131</td>
<td>0.907494</td>
</tr>
</tbody>
</table>

Consistency cutoff: 0.867622
solution coverage: 0.88241
solution consistency: 0.8293

Blead – benevolent leadership, OUnlearn – organizational unlearning, DynCap – dynamic managerial capabilities, ParTh – paradoxical thinking, Env_D – environmental dynamism; “~” stands for a low level of a condition; lack of “~” signifies high level of a condition for an outcome to occur.

Solution coverage, defined as the extent to which identified solutions account for the observed cases of the outcome, is relatively high, indicating that the identified combinations of conditions explain a significant portion of the observed cases. Specifically, it stands at 88% and 75%, respectively. Conversely, consistency, referring to holding consistency across different cases in the dataset, is also high, at 0.82 and 0.87, respectively. This signifies that the results are consistent and explain a majority of the cases studied.

As depicted in Table 4, there are five configurations leading to high organizational resilience within a company. In this solution, both organizational unlearning and dynamic managerial capabilities, along with benevolent leadership and high dynamism of the environment, contribute to the creation of increased organizational resilience. Additionally, firms should adopt a relatively straightforward approach to dilemmas and contradictions. However, paradoxical thinking negatively influences organizational resilience in two out of the five configurations. Conversely, in one configuration, such a streamlined approach to embedded complexity pays dividends in terms of creating organizational resilience capabilities.

Table 5. Intermediate configurations leading to low organizational resilience

<table>
<thead>
<tr>
<th>Intermediate solution (with parsimonious solution highlighted)</th>
<th>raw coverage</th>
<th>unique coverage</th>
<th>consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~BLEAD~DC~PARTH</td>
<td>0.442205</td>
<td>0.0100461</td>
<td>0.913593</td>
</tr>
<tr>
<td>2 ~BLEAD~OU~PARTH</td>
<td>0.453944</td>
<td>0.0093365</td>
<td>0.921628</td>
</tr>
<tr>
<td>3 ~BLEAD~DCENV_D</td>
<td>0.461206</td>
<td>0.0132677</td>
<td>0.902457</td>
</tr>
<tr>
<td>4 ~BLEADDCPARTH*~ENV_D</td>
<td>0.341796</td>
<td>0.0096093</td>
<td>0.913069</td>
</tr>
<tr>
<td>5 ~OU~DCPARTH*ENV_D</td>
<td>0.415724</td>
<td>0.0340157</td>
<td>0.937108</td>
</tr>
<tr>
<td>6 ~BLEADOU~ENV_D</td>
<td>0.555282</td>
<td>0.0045318</td>
<td>0.944992</td>
</tr>
<tr>
<td>7 ~BLEADOU~DC</td>
<td>0.597925</td>
<td>0.0216761</td>
<td>0.952095</td>
</tr>
</tbody>
</table>

Consistency cutoff: 0.89993
solution coverage: 0.752661
solution consistency: 0.870705

Blead – benevolent leadership, OUnlearn – organizational unlearning, DynCap – dynamic managerial capabilities, ParTh – paradoxical thinking, Env_D – environmental dynamism; “~” stands for a low level of a condition; lack of “~” signifies high level of a condition for an outcome to occur.

Table 5, on the other hand, illustrates that low levels of organizational resilience result from seven configurations. In the majority of cases, low levels of benevolent leadership, organizational unlearning, and dynamic managerial capabilities are critical factors leading to
decreased levels of organizational resilience. Only in one solution does a low level of environmental dynamism, signifying favorable environmental conditions, also appear to contribute to low levels of organizational resilience.

6. DISCUSSION AND CONCLUSIONS

The primary objective of this study was to underscore the pivotal role of dynamic managerial capabilities, coupled with organizational unlearning, benevolent leadership, and paradoxical thinking, in fostering organizational resilience in highly dynamic environments. Out of the 8 research hypotheses, there is clear support for the claim that dynamic managerial capabilities create conditions in which organizational resilience may emerge. This supports H1. Next, benevolent leadership facilitates the emergence of organizational resilience and partially mediates the relationships between dynamic managerial capabilities and organizational resilience. This supports the second hypothesis and partially supports the third, while the effect should be described as partial mediation.Thirdly, SEM analyses confirm that organizational unlearning is positively linked to organizational resilience, confirming the fourth hypothesis. The fifth hypothesis can be partially supported, while there is a partial mediation effect of organizational unlearning in the relationship between dynamic managerial capabilities and organizational resilience. Fourthly, paradoxical thinking is not significantly linked to organizational resilience, which falsifies the sixth hypothesis. It does not mediate the relationship between dynamic managerial capabilities and organizational performance as well, signifying rejection of the seventh hypothesis. Finally, environmental dynamism does not effectively moderate relationships between mediators and organizational resilience, which falsifies the eighth hypothesis.

The integration of findings from structural equation modeling (SEM) and fuzzy-set qualitative comparative analysis (fsQCA) yields insightful observations. Notably, within highly dynamic contexts, the cultivation of dynamic managerial capabilities, benevolent leadership, and organizational unlearning appears conducive to bolstering organizational resilience. Conversely, an abundance of paradoxical thinking appears to impede organizational efforts towards heightened resilience. However, the intricacies revealed by fsQCA suggest a nuanced reality—there exist numerous alternative pathways through which organizational resilience may be attained. Moreover, the absence or low presence of a specific condition or independent variable does not necessarily equate to diminished organizational preparedness or recovery capabilities in the face of adversity. This underscores the value of a configurational approach to studying organizational phenomena, shedding light on the inherent complexity of modern organizations (Kumar et al., 2022). Consequently, organizational strategies predicated on assumptions of universal best practices may fall short in addressing real-world complexities, underscoring the need for more adaptive and context-sensitive approaches (Meyer et al., 1993).

The study clearly demonstrates how organizational resilience might be achieved through diverse pathways. While certain antecedents help bolster the level of organizational preparedness for adversity (such as dynamic managerial capabilities, benevolent leadership, and organizational unlearning), they might become ineffective in certain configurations of other factors. Thus, for a better understanding of organizational resilience, it can be argued that more in-depth qualitative studies might be necessary to comprehend the role of certain conditions in facilitating organizational resilience. For example, benevolent leadership might be effective in specific conditions, which may not hold true if the conditions change (Papworth et al., 2009).
REFERENCES

Weick, K. E. (2024). Mann Gulch Revisited: Improvisation as a Surface of Apprehension. Academy of Management Discoveries, 10(1), 146-149. https://doi.org/10.5465/amd.2024.0006
