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Abstract: The mass customization paradigm, in conjunction with high market demands, puts a 

significant burden on contemporary production systems to output a larger quantity of 

diversified parts. Consequently, production systems need to achieve even higher flexibility 

levels through physical and functional reconfigurability. One way of achieving these high levels 

of flexibility is by utilizing optimization of both scheduling and process planning. In this paper, 

the authors propose to solve an NP-hard integrated process planning and scheduling 

optimization problem with transportation constraints regarding one mobile robot. The proposed 

production environment includes four types of flexibilities (process, sequence, machine, and 

tool) that can be leveraged to optimize the entire manufacturing schedule. Three metaheuristic 

optimization algorithms are compared on the nine-problem benchmark based on the makespan 

metric. The proposed Mountain Gazelle Optimizer (MGO) is compared to the whale 

optimization algorithm and particle swarm optimization algorithm. The experimental results 

show that MGO achieves most best results, while it is highly comparable on the average best 

results. 

 

Keywords: Integrated process planning and scheduling, optimization, mountain gazelle 
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1. INTRODUCTION 

 

The manufacturing industry has undergone significant developments in recent years 

thanks to the Integrated Process Planning and Scheduling (IPPS) methodology (Phanden et al., 

2019). This approach is designed to integrate process planning and scheduling activities, 

enabling businesses to maximize resource utilization and minimize costs while maintaining 

customer demands and delivery deadlines. IPPS leverages advanced optimization techniques 

such as mathematical programming or biologically inspired algorithms to generate efficient 
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production plans and schedules that meet multiple objectives and constraints. Besides the 

increased efficiency of the production systems, another key advantage of IPPS is its ability to 

provide decision support through tools such as Gant charts visualizations of different planning 

scenarios. These features allow management to evaluate various alternative schedules and 

select the optimal solution. Methods IPPS problems are designed to tackle the complexity of 

these optimization problems, employing sophisticated algorithms such as Mountain Gazelle 

Optimizer (MGO) (Abdollahzadeh et al., 2022), Genetic Algorithms (GA), Whale Optimization 

Algorithm (WOA) (Mirjalili & Lewis, 2016), Particle Swarm Optimization (PSO) (Petrović et 

al., 2016), and Mixed Integer Linear Programming (MILP) (Caumond et al., 2009) to generate 

feasible scheduling plans. 

The Mountain Gazelle Optimizer (MGO) is a novel population-based optimization 

algorithm that takes inspiration from the social structure, hierarchy, and behavior of mountain 

gazelles. MGO incorporates four critical behaviors of mountain gazelles, namely territorial 

solitary males, maternity herds, bachelor male herds, and migration in search of food, into its 

mathematical framework. Each behavior contributes to the algorithm's exploration and 

exploitation capabilities, making it excellent for balancing exploration and exploitation while 

achieving good performance across different optimization problems. 

Genetic Algorithms (GA) are a class of optimization algorithms that are inspired by the 

process of natural selection and genetics. They are well-suited for solving complex problems, 

as they can efficiently search large solution spaces and handle multiple objectives and 

constraints. The GA involves generating a population of potential solutions (chromosomes) and 

then iteratively evolving them through selection, crossover, and mutation operations to find 

optimal or near-optimal solutions. This iterative process mimics the evolution of species in 

nature, where the fittest individuals are selected for reproduction. The process continues until a 

satisfactory solution is obtained.  

The Whale Optimization Algorithm (WOA) is an optimization technique inspired by 

the hunting behavior of humpback whales. This nature-inspired algorithm is utilized to optimize 

solutions in various domains. The algorithm follows three main phases: encircling prey, bubble-

net attacking, and exploring for prey. These phases simulate solution exploitation strategy and 

diversification of the search, respectively. The WOA is well-suited algorithm in different fields 

because of its simplicity and adaptability.  

The Particle Swarm Optimization algorithm draws inspiration from the collective 

behavior of birds or fish, and is a robust computational algorithm for optimization problems. 

Its working principle relies on the process of iteratively refining candidate solutions based on a 

given measure of quality. PSO begins by generating a group of random particles, and then 

updates them over time to find the best possible solution. These particles move through the 

solution space by tracking the current optimal particle while also considering their own 

historically best positions. Thanks to its efficiency, PSO is a widely used optimization algorithm 

for a variety of problems.  

Mixed-integer linear Programming (MILP) is a powerful mathematical optimization 

technique that is specifically designed to model and solve optimization problems that have 

linear or integer constraints. MILP formulations are particularly useful for complex IPPS 

problems that require resource allocation, precedence constraints, and multiple objectives. To 

solve these formulations, commercially available software such as Gurobi (Achterberg, 2019) 

is highly efficient and effective, and can provide optimal or near-optimal solutions to even the 

most challenging IPPS problems.  

 



International May Conference on Strategic Management – IMCSM24 

May 2024, Bor, Republic of Serbia 

 

 

144 

 

1.1. Optimization algorithm in IPPS 

 

Numerous research studies have been carried out to analyze optimization algorithms on 

different benchmarks for IPPS, due to the no free lunch theory of optimization, which states 

that there is no one best optimization algorithm for all problems (Wolpert & Marcredy, 1997). 

Therefore, in the following paragraphs, we analyze different research studies regarding IPPS 

optimization. The paper (Petrović et al., 2019) introduces an innovative methodology that 

applies the Whale Optimization Algorithm to the IPPS with constraints regarding a single 

mobile robot. The authors propose numerous objective functions, and different datasets to test 

the enhanced version of the WOA algorithm. The experimental results demonstrate that WOA 

achieves better results compared to other optimization algorithms. In the paper (Homayouni & 

Fontes, 2019) the authors focus on developing an integrated formulation to address the joint 

production and transportation scheduling problem in flexible manufacturing environments. The 

study emphasizes the necessity of simultaneous scheduling of machines and Automatic Guided 

Vehicles (AGVs), as they are closely interconnected in manufacturing systems where parts need 

to be transported across various machines for different operations. The authors propose a novel 

MILP model that incorporates two sets of chained decisions: one for machine scheduling and 

another for AGV scheduling. These sets are linked through completion time constraints for both 

machine operations and transportation tasks. Computational experiments conducted using the 

Gurobi commercial software on benchmark problem demonstrate the effectiveness of the 

proposed model in finding optimal solutions. 

The study detailed in (Homayouni et al., 2020) explores the utilization of a multistart 

biased random key genetic algorithm augmented with a greedy heuristic to discover high-

quality solutions for the job shop scheduling problem with transportation constraints. This 

approach synchronizes four interconnected aspects: job routing, machine scheduling, vehicle 

allocation, and transportation timing, with the goal of reducing the total completion time, or 

makespan. The experimental findings underscore the method's effectiveness across various 

scheduling problem categories, validated through testing on over 60 cases across two problem 

sets. Building on this, the authors (Homayouni & Fontes, 2021) introduced a late acceptance 

hill-climbing strategy to prevent the algorithm from stagnating at local maxima. This technique 

underwent testing on five datasets, demonstrating its efficacy in optimizing smaller and 

medium-sized problem instances and delivering competitive outcomes for larger scenarios. The 

authors of the paper (Petrović et al., 2022) present an innovative methodology using the multi-

objective Grey Wolf Optimizer (GWO) to efficiently perform IPPS with material transport 

systems in intelligent manufacturing systems. The methodology includes a comprehensive 

analysis, mathematical formulation of 13 novel fitness functions, and a strategy for optimal 

exploration of the multi-objective search space. The effectiveness of the enhanced GWO 

algorithm is quantitatively compared with other metaheuristic methods across 25 benchmarks. 

The experimental results indicate that the enhanced GWO algorithm outperforms the other 

algorithms in terms of convergence, coverage, and robustness in finding optimal Pareto 

solutions. The paper (Utama et al., 2024) introduces a novel application of the MGO algorithm 

for optimizing the no-wait flow shop scheduling problem with the aim of minimizing industrial 

energy consumption. The MGO algorithm is implemented with the Large Rank Value procedure. 

The MGO is compared to GWO, GA, PSO, Coati Optimization Algorithm, and Fire Hawk 

Optimizer, on three different experimental setups. The One-Way ANOVA statistical tests were 

performed to show the statistical significance of the obtained results, which show the 

advantages of the proposed MGO algorithm. 

Different from other approaches in this paper, the Mountain Gazelle Optimizer (MGO) 

algorithm is utilized for IPPS with single transportation vehicle constraints. The MGO was 
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selected due to its advantages regarding diverse strategies for exploitation and exploration, 

which are necessary for finding the optimal solution for optimization problems with such vast 

solution space, such as IPPS. 

 

2. THE MOUNTAIN GAZELLE OPTIMIZER 

 

The Mountain Gazelle Optimizer represented one of the newly developed nature-

inspired population-based optimization algorithms, which found its inspiration behind the 

social hierarchical structure of mountain gazelle herd (Fig. 1). 

 

 
Figure 1. Social structure of mountain gazelles with male in the middle 

 

The mathematical framework of the MGO algorithm includes four behaviors of 

mountain gazelles: 1. Territorial Solitary Males (TSM), 2. Maternity Herds (MH), 3. Bachelor 

Male Herds (BMH), and 4. Migration in Search for Food (MSF). Each gazelle in the population 

represents a solution to the optimization problem (X) with D solution parameters. Many random 

numbers are defined within the MGO algorithm, and their notations are as follows. The r 

defines random numbers that undergo uniform distribution within [0, 1] range, vectors of 

random numbers drawn from normal distribution with zero mean and standard deviation of one 

are defined as N(D), with D being number of elements, and random integers in [1, 2] range are 

defined as ri. In order to mathematically define four behaviors, firstly, four coefficients need to 

be defined (1): 

 

 

𝐶𝑜𝑓 =

{
 

 
𝑎 + 1 + 𝑟1
𝑎 ⋅ 𝑁1(𝐷)

𝑟2(𝐷)

𝑁2(𝐷) ⋅ 𝑁3(𝐷)
2 ⋅ 𝑐𝑜𝑠(2𝑟3 ⋅ 𝑁4(𝐷))

, (1) 

 

where 𝑎 = −1 + 𝑖𝑡𝑒𝑟 ⋅ (
−1

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
). Afterward, vector F is defined as (2): 

 

 
𝐹 = 𝑁5(𝐷) ⋅ 𝑒𝑥𝑝 (2 − 𝑖𝑡𝑒𝑟 ⋅

2

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
). (2) 
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The second part of the multiplication of F starts with values larger than 1 (depending 

on the maximum number of interactions) and exponentially converges to 1 with iterations, 

leaving a simple normal random vector in the last iteration. Now, all relevant values are defined 

to calculate the young male heard coefficient vector defined as BH (3): 

 

 
𝐵𝐻 = 𝑋𝑟𝑎 ⋅ 𝑟1 +𝑀𝑝𝑟 ⋅ 𝑟2, (3) 

 

where Xra is a randomly selected solution from the last third of the population; since the 

solutions are sorted in the acceding order, these represent the worst 33% of the solutions in the 

entire population. Mpr is the mean value for the selected 33% of the population, averaged for 

each dimension in the input vector. The TSM (4) aspect of the algorithm models the behavior 

of adult male gazelles that establish and defend territories. It is used in the algorithm to enhance 

the exploitation ability, allowing the optimizer to search intensively around the best solutions 

found so far: 

 

 
𝑇𝑆𝑀 = 𝑋1 − |(𝑟𝑖1 ⋅ 𝐵𝐻 − 𝑟𝑖2 ⋅ 𝑋𝑡) ⋅ 𝐹| ⋅ 𝐶𝑜𝑓𝑟, (4) 

 

where X1 is the best solution obtained so far, Xt is the currently updated agent, and Cofr is the 

randomly selected coefficient from (1). 

The second behavior, MH (5), consists of females and their offspring, reflecting a 

balance between exploration and exploitation in the algorithm. This mechanism ensures 

diversity in the solution space and prevents premature convergence: 

 

 
𝑀𝐻 = 𝐵𝐻 + 𝐶𝑜𝑓𝑟 + (𝑟𝑖3 ⋅ 𝑋1 − 𝑟𝑖4 ⋅ 𝑋𝑟𝑎𝑛𝑑) ⋅ 𝐶𝑜𝑓𝑟, (5) 

 

where Xrand represented a randomly selected solution from the population.  

The parameter Dist (6) needs to be calculated to model Bachelor Male Herds behavior: 

 

 
𝐷𝑖𝑠𝑡 = |𝑋𝑡 − 𝑋1| ⋅ (2𝑟6 − 1). (6) 

 

The third behavior, BMH (7), represents the young male gazelles, and it is used to 

explore new areas in the search space, contributing to the algorithm's exploration capabilities. 

 

 
𝐵𝑀𝐻 = 𝑋𝑡 − 𝐷𝑖𝑠𝑡 + (𝑟𝑖5 ⋅ 𝑋1 − 𝑟𝑖6 ⋅ 𝐵𝐻) ⋅ 𝐶𝑜𝑓𝑟, (7) 

 

Finally, Migration in Search for Food (8) is modeled with a random search mechanism, 

that allows algorithm to avoid local optima and ensure comprehensive exploration of the search 

space: 

 
𝑀𝑆𝐹 = (𝑙𝑏 − 𝑢𝑏) ⋅ 𝑟7 + 𝑙𝑏, (8) 

where lb and ub are the lower and upper bounds of the parameter space. As it can be seen, MSF 

is a uniform random sampling of values in the parameter space, which allows MGO to search 

the entire parameter space even if the initial solutions are not generated well. 
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2.1. The MGO algorithm for IPPS 

 

Process plans within the production environment are characterized by different types of 

flexibilities that can influence the final scheduling plan. This paper considers the following 

flexibilities: process plan, sequencing, machine, and tools. Process plan flexibility means that 

each job can be done by employing different manufacturing operations or sequences of 

operations. Sequencing refers to the ability to change the order of manufacturing operations 

within a job. Machine and tool flexibilities refer to the possibility of selecting alternative 

machines and tools for each manufacturing operation. Moreover, jobs are transported between 

machines by a single mobile robot. For the IPPS problem, each valid solution contains four 

strings (Petrović et al., 2019) that are used to represent a selected sequence of operations, 

process plans, selected machines and tools for each operation. Therefore, the optimization 

process aims to select the optimal values for all strings, which results in the minimal time 

required for the machining of all jobs, i.e., minimizing the makespan cost function. Finally, the 

implementation of MGO optimization for the IPPS problem is given in Table 1.  

 
Table 1. Pseudo-code of MGO algorithm implemented for IPPS problem 

1. 

Input: Data for (i) the set of jobs, (ii) the set of alternative process plans for each job, (iii) the set of 

available machines and tools for each operation, processing times for all operations, and transport times 

between all machines. Definition of algorithm parameters: population size (N), maximum number of 

generations. 

2. Initialization of all strings for the whole population 

3. Calculation of cost function value for each gazelle 

4. for #1 every generation 

5. Select a leader 

6.      for #2 every gazelle 

7.        Generate new solution for all IPPS strings according to equations (4), (5), (7), (8) 

8.      endfor #2 

9. 
Calculate the cost function value for the entire new population and select N best solutions for the new 

generation 

10. endfor #1 

11. Save results 

 

3. EXPERIMENTAL RESULTS  

 

An experimental evaluation of the proposed algorithm is carried out on a benchmark 

containing 9 problems, where each problem contains 6 jobs manufactured on 10 machines using 

20 different tools. The proposed MGO algorithm is compared to two state-of-the-art algorithms 

optimization algorithms, namely WOA and PSO. Each algorithm is evaluated five times on 

each problem. The results of the experimental evaluation are shown in Table 2. The algorithms 

are compared based on two metrics, the best and average value achieved within five 

experimental evaluations. As it can be seen, the MGO algorithm achieves most (4/9) best 

results, which demonstrates the advantage of the MGO's convergence properties. On the other 

hand, both MGO and PSO achieved the same number of average best results, indicating that 

MGO can get stuck in local optima in certain experimental evaluations.  
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Table 2. Experimental results 
Problem best average 

WOA PSO MGO WOA PSO MGO 

1 133 163 146 172 201 173 

2 169 192 149 179 230 172 

3 288 240 248 309 265 265 

4 143 126 140 168 133 159 

5 248 238 262 277 251 286 

6 157 202 170 170 227 230 

7 287 271 254 329 293 282 

8 145 135 129 155 161 135 

9 150 137 108 175 151 175 

 

The convergence curves of the best evaluation of all three algorithms for problems 2, 8, 

and 9 can be seen in Figure 2. For problems 2 and 8, all the algorithms converge to their optimal 

values within the first 40 iterations, indicating that their exploration capabilities are sufficient 

for the considered problems. On the other hand, for problem 9, PSO still manages to achieve a 

better solution even after 47 generations, indicating that it can benefit from a larger number of 

generations. 

 

 

 
Figure 2. Convergence curves for the best run of three analyzed algorithms 
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Figure 3. shows the Gantt charts for the best experimental evaluation of the MGO 

algorithm, again for problems 2, 8, and 9. Each Gantt chart is utilized to represent the sequence 

of manufacturing operations, the machines that are used, operation duration, and actions the 

mobile robot needs to perform to transport the jobs from machine to machine. Mobile robot has 

three actions that it can perform: moving jobs to the machine for the subsequent operation, 

moving to the machine where the previous operation of the job is manufactured, and waiting 

for the machine to finish the current operation of the job.   

 

 

 

Figure 3. Gantt charts of three problems 
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4. CONCLUSION 

 

In this paper, the authors propose a novel approach for integrated process planning and 

scheduling problems based on the mountain gazelle optimization algorithm. The optimization 

of the production process planning and scheduling is performed based on the makespan metric. 

The proposed algorithm is compared to two state-of-the-art optimization algorithms. After 

experimental evaluation with nine different problems containing six jobs, 10 machines, and 20 

tools, the proposed MGO algorithm has shown the best convergence properties. However, the 

MGO achieved the same number of average best results as the PSO. Therefore, improvements 

in the exploration capabilities of the MGO algorithm can be investigated in the future.  
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